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1 Introductory level problems

Theorem 1 A map f : Sn → Y is null-homotopic if and only if it can be extended to Dn+1 :=
{x ∈ Rn+1 : ||x|| ≤ 1}.

Proof. We first prove the only if part. Let f : Sn → Y be null-homotopic, say F : Sn × [0, 1] → Y
with F(•, 0) = f and F(•, 1) = cy0 , where cy0 is the constant map based at y0 ∈ Y . Then,
g : Dn+1 → Y defined by

g(z) :=

{
y0 if 0 ≤ ||z|| ≤ 1

2 ,

F
(

z
||z|| , 2 − 2||z||

)
if 1

2 ≤ ||z|| ≤ 1.

is continuous by pasting lemma and g(z) = F(z, 0) = f (z), i.e., g extends f .

Now, we prove the if part. Suppose f : Sn → Y is a map and g : Dn+1 → Y extends f , i.e., g|Sn = f .
Define, F : Sn × [0, 1] → Y as

F(z, t) := g
(
(1 − t)z + tz0

)
, where z0 ∈ Sn is a fixed point.

Notice that F(z, 1) = g(z0) = f (z0) for all z ∈ Sn. Hence, F : f ≃ cf (z0).

Theorem 2 Let x, y ∈ X. Denote by P(x, y) the set of equivalence classes of paths in X from
x to y under the equivalence relation ‘homotopic relative to {0, 1}’. Then there is a one-to-one
correspondence between P(x, y) and P(x, x) if and only if P(x, y) ̸= ∅.

Proof. Note that P(x, x) is always non-empty (consider the constant loop based at x). So, existence
of a one-to-one correspondence between P(x, y) and P(x, x) implies P(x, y) ̸= ∅.

Next, let P(x, y) ̸= ∅, and so choose a path α : [0, 1] → X with α(0) = x and α(1) = y. Now,
define

f : P(x, y) ∋ [γ] 7−→ [γ ∗ α] ∈ P(x, x) and

g : P(x, x) ∋ [ℓ] 7−→ [ℓ ∗ α] ∈ P(x, y).

Now, it is easy to check that f , g are well-defined maps and f ◦ g = IdP(x,x), g ◦ f = IdP(x,y).
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Theorem 3 Let p, q : I → X be paths with p(1) = q(0). For 0 < s < 1 define hs : I → X by

hs(t) :=

{
p
(

t
s

)
if 0 ≤ t < s,

q
(

t−s
1−s

)
if s ≤ t ≤ 1.

Then, hs ≃rel {0,1} h 1
2
=: p ∗ q.

Proof. Consider H : I × I → X defined by

H(t, ℓ) :=



p

 t

(1 − ℓ)s +
ℓ

2

 if 0 ≤ t ≤ s, ℓ ∈ [0, 1];

q

 t − (1 − ℓ)s − ℓ

2
1 − (1 − ℓ)s − ℓ

2

 if s ≤ t ≤ 1, ℓ ∈ [0, 1].

Notice that H(−, 0) = hs and H(−, 1) = p ∗ q, and H(0,−) = p(0),H(1,−) = q(1).

Theorem 4 Let f , g : I → X be continuous. Define f : I → X as f (s) := f (1 − s) for all s ∈ I.
Then f ≃rel {0,1} g if and only if f ≃rel {0,1} g.

Proof. Let H : I × I → X be a homotopy with H(−, 0) = f , H(−, 1) = g and H(0, t) =

f (0), H(1, t) = f (1) for all t ∈ I. Define H : I × I → X by

H(s, t) := H(1 − s, t) for (s, t) ∈ I × I.

Then, H : f ≃rel {0,1} g as H(−, 0) = f , H(−, 1) = g and H(0, t) = H(1, t) = f (1), H(1, t) =

H(0, t) = f (0) for all t ∈ I. The reverse direction is similar.

Theorem 5 Let f0, f1 : X → Y and g : Y → Z be continuous and A ⊆ X. If f0 ≃rel A f1, then
g ◦ f0 ≃rel A g ◦ f1.

Proof. Let H : X × I → Y be the relative homotopy from f0 to f1, i.e., H(−, 0) = f0, H(−, 1) = f1

and H(a, t) = f0(a) for (a, t) ∈ A × I. Then the map g ◦ H : X × I → Z gives a homotopy from
g ◦ f0 to g ◦ f1 relative to A.

Theorem 6 Let f0, f1 : X → Y and g0, g1 : Y → Z be continuous. If f0 ≃ f1 and g0 ≃ g1 then
g0 ◦ f0 ≃ g1 ◦ f1.

Proof. Let F : X × I → Y be a homotopy from f0 to f1 and G : Y × I → Z be a homotopy from
g0 to g1. Define H : X × I → Z by

H (x, t) := G
(
F(x, t), t

)
for all (x, t) ∈ X × I.

Now for any x ∈ X we have,

H (x, 0) = G
(
F(x, 0), 0

)
= G

(
f0(x), 0

)
= g0 ◦ f0(x),

H (x, 1) = G
(
F(x, 1), 1

)
= G

(
f1(x), 1

)
= g1 ◦ f1(x).

So, H : g0 ◦ f0 ≃ g1 ◦ f1.
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Theorem 7 Let X,Y be topological spaces and let F (X,Y) be the set of continuous functions
from X to Y with the compact-open topology.

• If f ≃ g : X → Y then there is a path from f to g in the space F (X,Y).

• Suppose that X is compact and Hausdorff; prove that there is a path from f to g in F (X,Y)
if and only if f ≃ g : X → Y .

Proof. To prove the first part, let H : X × [0, 1] → Y be a homotopy from f to g. Now, consider
p : [0, 1] ∋ t 7−→ H(−, t) ∈ F (X,Y). The continuity of p follows from [Mun00, Theorem 46.11
on page 287].

Now, to prove the second part, let p : [0, 1] → F (X,Y) be a path from f , g. Then H : X×[0, 1] → Y
defined by H(x, t) := p(t)(x) for all (x, t) ∈ X × [0, 1] is a continuous map as X is locally compact
Hausdorff, see [Mun00, Theorem 46.11 on page 287]. Also, H is a homotopy from f to g. For
the converse part, see the first paragraph.

Lemma 8 Let X and Y be two topological spaces, and ∼X and ∼Y be two equivalence relations
on X and Y , respectively. Let F : X × [0, 1] → Y be a continuous map such that F(x, t) ∼Y F(x′, t)
for all t ∈ [0, 1] whenever x ∼X x′. Then, F̃ : X

∼X
× [0, 1] → Y

∼Y
defined by ([x], t) 7−→ [F(x, t)] is

continuous.

Proof. Note that for quotient map p : X → X/ ∼X and q : Y → Y/ ∼Y we have p × Id[0,1]

is quotient map as [0, 1] is locally compact Hausdorff space. Now, consider the commutative
diagram below:

X × [0, 1]

X
∼X

× [0, 1] Y
∼Y

p×Id[0,1] q◦F

F̃

Note that F̃ ◦
(
p × Id[0,1]

)
= q ◦ F, so for any U ⊆open Y/ ∼Y we have (q ◦ F)−1(U) is open in

X × [0, 1], i.e.,
(
p × Id[0,1]

)−1 (F̃−1(U)
)
= (q ◦ F)−1(U) is open in X × [0, 1], hence F̃−1(U) is

open in X
∼X

× [0, 1].

Theorem 9 Möbius strip has a strong deformation retract onto a circle embedded in itself. Thus,
the Möbius strip and cylinder are homotopy equivalent.

Proof. Consider the Möbius strip M := [−1, 1] × [−1, 1]
(−1,−y) ∼ (1, y) . Then, there is a deformation retract of

M onto its central circle C := { [x, 0] : −1 ≤ x ≤ 1}. To prove this consider, H : M × [0, 1] → M
defined by

H :
(
[x, y], t

)
7−→ [x, (1 − t)y] for − 1 ≤ x, y ≤ 1, t ∈ I.
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Note that H is continuous by Lemma 8.

Möbius strip has a strong deformation retract onto the central circle.

For the second part, consider the Cylinder S1 × [0, 1] and H : S1 × [0, 1] × [0, 1] ∋ (z, s, t) 7−→(
z, (1 − t) · s

)
∈ S1 × [0, 1]. Notice that H gives a strong deformation retract of S1 × [0, 1] onto

S1 × 0. Hence, a Cylinder is homotopy equivalent to a circle. Since being homotopy equivalent
is an equivalence relation in the category of Top, we are done.

Theorem 10 A space X is contractible if and only if IdX is homotopic to a constant map.

Proof. X is contractible means there are continuous maps f : X → pt and g : pt → X such that
g ◦ f ≃ IdX and f ◦ g ≃ Idpt. Note that g ◦ f is a constant map. Hence, IdX is homotopic to a
constant map.

Conversely, let X be a space such that IdX is homotopic to a constant map, say H : IdX ≃ Cx where
Cx : X → X is the constant map based at x ∈ X. Consider the inclusion map Ix : {x} ↪→ X. Let
Cx : X → {x} be the obvious map. Then Cx ◦ Ix = Id{x} and H : IdX ≃ Cx = Ix ◦ Cx.

Theorem 11 The following two statements are equivalent:

(a) There is a retract r : Bn(1) → Sn−1.

(b) Sn−1 is contractible.

Proof. Suppose we have a retract r : Bn(1) → Sn−1. Consider a homotopy H : Sn−1 × I → Sn−1

given by
H(z, t) := r

(
(1 − t) · z

)
for z ∈ Sn−1, t ∈ I.

Note that H(−, 0) = IdSn−1 and H(−, 0) is a constant map. So, (a) =⇒ (b).

To prove (b) =⇒ (a) suppose Sn−1 is contractible, so we have a homotopy H : Sn−1 × I → Sn−1

from IdSn−1 to the constant map H(−, 1). Define r : Bn(1) → Sn−1 as

r(x) :=

{
H(1, 1) if 0 ≤ ||x|| ≤ 1

2 ,

H
(

x
||x|| , 2 − 2||x||

)
if 1

2 ≤ ||x|| ≤ 1.
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Definition 12 Let C (X) be the set of all connected components of X. If f : X → Y is continuous
then define C (f ) : C (X) → C (Y) as

C (f )(connected component C of X) := the unique connected component of Y containing f (C).

Remark 13 For X
f−→ Y

g−→ Z it is easy to show that C (IdX) = IdC (X) and C (g◦ f ) = C (g)◦C (f ).
That is, C : Top → Set is a functor.

Lemma 14 If f1, f2 : X → Y are homotopic, then C (f1) = C (f2).

Proof. Let Φ : f1 ≃ f2 be a homotopy, then for any connected component C of X we have

f1(C) = Φ(C × 0) ⊆ Φ (C × [0, 1]) and f2(C) = Φ(C × 1) ⊆ Φ (C × [0, 1]) .

Now, Φ (C × [0, 1]) is contained in a unique connected component of Y . So, both f1(C) and f2(C)
are contained in a unique connected component of Y .

Lemma 15 Spaces having the same homotopy type have the same number of connected compo-
nents.

Proof. Suppose f : X → Y and g : Y → X be such that f ◦ g ≃ IdY and g ◦ f ≃ IdX. Then,
C (f ) ◦ C (g) = C (f ◦ g) = C (IdY) = IdC (Y), and similarly, C (g) ◦ C (f ) = C (g ◦ f ) = C (IdX) =
IdC (X). That is, both C (f ) and C (g) are bijections.

Theorem 16 Prove that if X is connected and has the same homotopy type as Y , then Y is also
connected.

Proof. This is a particular case of Lemma 15.

Definition 17 A subset A ⊆ X is said to be a weak retract of X if there exists a continuous map
r : X → A such that r ◦ i ≃ Id : A → A where i : A ↪→ X is the inclusion map.

Theorem 18 There exist spaces A ⊆ X such that A is a weak retract of X but not a retract of X.

Proof. Consider the comb space

A :=
{(

1
n
, t
)

: 0 ≤ t ≤ 1, n ∈ N
}⋃(

0 × [0, 1]
)⋃(

[0, 1] × 0
)
.

Consider the map H : A × [0, 1] → A given by

H
(
(x, y), t

)
:=

{(
x, (1 − 2t)y

)
for 0 ≤ t ≤ 1

2 ,(
2(1 − t)x, 0

)
for 1

2 ≤ t ≤ 1.

Now, notice the following:

• A is contractible as H : IdA ≃ c(0,0).

• H
(
(0, 0), t

)
= (0, 0) for all t ∈ [0, 1], i.e., A is a deformation retract onto {(0, 0)}.
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Let X := [0, 1]2 and r : X → A be the constant map based at (0, 0). Therefore, r ◦ i = c(0,0) ≃ IdA,
i.e., A is weak retract of X.

Now, we show that A is not a retract of X. On the contrary, let’s assume r : X → A is a retract.
Consider the point q =

(
0, 1

2

)
. Let V := A∩B(q; ε), where ε = 1

4 . Now, r(q) = q implies we must
have an open ball B(q; δ) such that U := X ∩B(q; δ) is mapped into V by r. Since U is connected,
r(U) is contained in the set

{
(0, t)|1

4 < t < 3
4

}
, the component of V containing q. However, for n

sufficiently large, we have the point pn =
(

1
n ,

1
2

)
in U, which is clearly moved by r . So, r cannot

be a retraction.

Theorem 19 There exist spaces A ⊆ X such that A is a deformation retract of X but not a strong
deformation retract of X.

Proof. Let

X :=
{(

1
n
, t
)

: 0 ≤ t ≤ 1, n ∈ N
}⋃(

0 × [0, 1]
)⋃(

[0, 1] × 0
)
,

and A := 0 × [0, 1]. Define H : X × [0, 1] → X as

H
(
(x, y), t

)
:=


(
x, (1 − 3t)y

)
if 0 ≤ t ≤ 1

3 ;(
(2 − 3t)x, 0

)
if 1

3 ≤ t ≤ 2
3 ;(

0, (3t − 2)y
)

if 2
3 ≤ t ≤ 1.

Then H is a homotopy between IdX and i ◦ r, where i : A ↪→ X is the inclusion map and
r : (x, y) 7−→ (0, y) is the retraction of X onto A . So, A is a deformation retract of X.

Now, we show A is not a strong deformation retract of X. On the contrary, that there is a homotopy
X × [0, 1] → X such that F(p, 0) = p,F(p, 1) ∈ A for all p ∈ X, and F(q, t) = q for every q ∈ A
and all t ∈ [0, 1]. Let q be a point of A other than the point (0, 0) and let B(q; ε) be an open ball
in R2, which does not meet the set [0, 1] × {0} ⊂ X. Then, W = X ∩ B(q; ε) is a nbd of q in X,
and {q} × [0, 1] ⊂ F−1(W). By the Tube Lemma [Mun00, Lemma 26.8.], there is an open nbd
U of q in X such that U × [0, 1] ⊆ F−1(W). So, for each p ∈ U, F

(
{p} × [0, 1]

)
is contained in

the component of W containing p, and this component is the intersection of B(q; ε) with the tooth
containing p. This contradicts the fact that F(p, 1) ∈ A for every p ∈ X, and hence our claim.

Definition 20 A subset A ⊆ X is said to be a weak deformation retract of X if the inclusion map
i : A ↪→ X is a homotopy equivalence.

Theorem 21 There exist spaces A ⊆ X such that A is a deformation retract of X but not a strong
deformation retract of X.

Proof. Consider the proof of Theorem 18. The inclusion map of the comb space into the unit
square is a homotopy equivalence, as both spaces are contractible. But there is no retraction of
the unit square onto the comb space.

Theorem 22 Let ∅ ̸= A ⊆ X, Y ̸= ∅. Then A× Y is a retract of X × Y if and only if A is retract
of X.
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Proof. If r : X → A is a retract then r × IdY : X × Y → A × Y is a retraction. Conversely, for any
retraction R : X × Y → A × Y and any y0 ∈ Y the map r : X → A defined by

r(x) := πX ◦ R(x, y0) for x ∈ X

is retraction of X onto A.

Theorem 23 Let A ⊆ B ⊆ C. If A is a retract of B, and B is a retract of C, then A is a retract of
C.

Proof. Let r1 : B → A and r2 : C → B be retractions. Then r1 ◦ r2 : C → A is a retraction of C
onto A.

Theorem 24 Let x0 ∈ R2. Then there exists a circle C, which is a strong deformation retract of
R2 \ {x0}.

Proof. Let C := {z ∈ R2 : |z − x0| = 1}. Define H : R2 \ {x0} × [0, 1] → R2 \ {x0} as

H(z, t) := (1 − t)z + t
(

z − x0

|z − x0|
+ x0

)
for all (z, t) ∈ R2 \ {x0} × [0, 1].

Lemma 25 Define Dn := {z ∈ Rn : ||z|| ≤ 1}. Let x, y ∈ int (Dn). Then, there is a homeomor-
phism φ : Dn → Dn such that φ(w) = w for ||w|| = 1 and φ(x) = y.

Proof. Consider the homeomorphism ψ : int(Dn) → Rn given by

ψ(z) =
z

1 − ||z||
.

Let T : Rn → Rn be the translation given by T(z) = z − ψ(x) + ψ(y). Now, we show that
ψ−1 ◦ T ◦ ψ : int(Dn) → int(Dn) can be extended to a homeomorphism Dn → Dn.

Note that for ||z|| < 1, write z = rv for some v ∈ Sn−1 and some r ∈ [0, 1). Then, ψ(z) = r
1−r v

and for any R ∈ [0,∞) and any w ∈ Sn−1 we have ψ−1(Rw) = R
1+Rw. So, for any r ∈ [0, 1) and

any v ∈ Sn−1 we have

ψ−1 ◦ T ◦ ψ(rv) =

∣∣∣∣ r
1−r v − ψ(x) + ψ(y)

∣∣∣∣
1 +

∣∣∣∣ r
1−r v − ψ(x) + ψ(y)

∣∣∣∣ = ||rv − (1 − r)ψ(x) + (1 − r)ψ(y)||
(1 − r) + ||rv − (1 − r)ψ(x) + (1 − r)ψ(y)||

.

Therefore extension is possible.

Theorem 26 Every connected manifold is homogeneous, i.e., for a connected manifold M and
any two points a, b ∈ M, there is a homeomorphism Φ : M → M such that Φ(a) = b.
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Proof. To prove this, consider the non-empty set

S := {x ∈ M| there is a homeomorphism f : M → M with f (x) = b}.

Now, consider y ∈ S with a homeomorphism g : M → M such that g(y) = b. Let ψ : U
(
⊆closed

M
)
→ Dn be a homeomorphism with y ∈ int(U). Now, for any x ∈ int(U), choose φ : Dn → Dn

such that φ (ψ(x)) = ψ(y) and φ(w) = w for ||w|| = 1. So, define a homeomorphism f : M → M
as

f (z) :=

{
g
(
ψ−1 ◦ φ ◦ ψ(z)

)
if z ∈ int(U),

g(z) if z ∈ M \ int(U).

In other words, int(U) ⊆ S. That is, S is open in M. Similarly, prove that M \ S is open. Now, M
is connected to imply the result.

Theorem 27 Every connected manifold is 2-homogeneous, i.e., given {a1, a2} ∪ {b1, b2} ⊆ M,
we have a homeomorphism ψ : M → M such that ψ(ak) = bk for each k = 1, 2.

Proof. Let

T := {(x1, x2) ∈ M × M| there is a homeomorphism f : M → M with f (x1) = b1, f (x2) = b2}.

Now, consider (y1, y2) ∈ T with a homeomorphism g : M → M such that g(y1) = b, g(y2) = b2.
Let ψk : Uk

(
⊆closed M

)
→ Dn be a homeomorphism with yk ∈ int(Uk) for k = 1, 2 with

U1 ∩ U2 = ∅. Now, for any xk ∈ int(Uk), choose φk : Dn → Dn such that φk (ψk(xk)) = ψk(yk)
and φk(w) = w for ||w|| = 1 where k = 1, 2. So, define a homeomorphism f : M → M as

f (z) :=


g
(
ψ−1

1 ◦ φ1 ◦ ψ1(z)
)

if z ∈ int(U1),

g
(
ψ−1

2 ◦ φ2 ◦ ψ2(z)
)

if z ∈ int(U2),

g(z) if z ∈ M \
(
int(U1) ∪ int(U2)

)
.

In other words, int(U1) × int(U2) ⊆ T . That is, T is open in M × M. Similarly,
(
M × M

)
\ T is

open. Now, M × M is connected implies the result.

Remark 28 Similarly, one can show that every connected manifold is k-homogeneous for each
integer k ≥ 1.

Theorem 29 Torus minus a point is homotopy equivalent to figure eight.

Proof. Note that Torus is the quotient space T := [−1, 1] × [−1, 1]
(−1, t) ∼ (1, t) and (s,−1) ∼ (s, 1) and figure-

eight is the space S1 ∨ S1 := S1 × {1} ∪ {1} × S1. Let q : [−1, 1] × [−1, 1] → T be the quotient
map.

Note that for any two points a, b ∈ T we have a homeomorphism φ : T → T with φ(a) = b, see
Theorem 26. In other words, T \ {a} ∼= T \ {b}. So, without loss of generality, we may remove
the point q(0, 0) from the Torus to solve this problem.
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Now, note that there is a strong deformation retract H :
(
[−1, 1]2\{(0, 0)}

)
×I → [−1, 1]2\{(0, 0)}

of [−1, 1]2 \ {(0, 0)} onto its boundary ∂[−1, 1]2 considering the radial projections starting from
the origin. That is

H(x, y, t) :=
(

t
max(|x|, |y|)

+ 1 − t
)

(x, y) for (x, y) ∈ [−1, 1]2 \ {(0, 0)} and t ∈ I.

Now, the map (
T \ {q(0, 0)}

)
× I ∋

(
q(x, y), t

)
7−→ q ◦ H(x, y, t) ∈ T

is a strong deformation retract of T \ {q(0, 0)} onto q
(
∂[−1, 1]2

) ∼= S1 ∨ S1.

Theorem 30 Sn is a strong deformation retract of Rn+1 \ {0}.

Proof. Consider
(
Rn+1 \ {0}

)
× [0, 1] ∋ (z, t) 7−→ (1 − t)z + t z

|z| ∈ Rn+1 \ {0}.

Theorem 31 Let X := {x, y} be the two-point Sierpinski space where the only open sets are
X,∅, {x}. Then, there is a strong deformation retract of X onto {x}.

Proof. Consider the map H : X × [0, 1] → X defined by

H(z, t) :=

{
z if t = 0,

x if t > 0.

Now, H−1
(
{x}
)
= {(x, 0)}∪X× (0, 1] =

(
{x}× [0, 1]

)
∪
(
{y}× (0, 1]

)
, which is an open subset

of X × [0, 1], as it’s complement in X × [0, 1] is {y} × {0} ⊆closed X × [0, 1].

This shows that H is continuous. Also, since H(−, 0) = IdX and H(−, 1) = cx for all z ∈ X, then
this shows that H : IdX ≃ cx.

Theorem 32 If X is Hausdorff, and r : X → A, then A is closed in X.

Proof. If there were x ∈ A \ A, then because x ̸= r(x), and X is Hausdorff, there would exist
disjoint nbds U ⊃ {x}, and V ⊃ {(r(x)} such that r(U) ⊂ V; however since x ∈ A, there must be
a ∈ A in U, and since a = r(a) ∈ V , this contradicts the disjointness of U and V .

Remark 33 If X is not Hausdorff, then Theorem 32 may not be true; for example, consider
Theorem 31.

Theorem 34 Let Y be a subspace of Rn and let f , g : X → Y be two continuous maps. Prove that
if for each x ∈ X, f (x) and g(x) can be joined by a straight-line segment in Y , then f ≃ g. Deduce
that any two maps f , g : X → Rn must be homotopic.

Proof. Consider X × [0, 1] ∋ (x, t) 7−→ tf (x) + (1 − t)g(x) ∈ Y .

Theorem 35 Let Y be contractible; then any f , g : X → Y are homotopic.
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Proof. Let H : IdY ≃ cy0 . Then consider,

G(x, t) :=

{
H (f (x), 2t) if 0 ≤ t ≤ 1

2 ,

H (g(x), 2t − 1) if 1
2 ≤ t ≤ 1.

Theorem 36 Let X be any space and let f , g : X → Sn be two continuous maps such that
f (x) ̸= −g(x) for all x ∈ Sn. Then f is homotopic to g.

Proof. Consider

X × [0, 1] ∋ (x, t) 7−→ (1 − t)f (x) + tg(x)
|(1 − t)f (x) + tg(x)|

∈ Sn.

Theorem 37 Any rotation on Sn is homotopic to the identity map of Sn.

Proof. Let A ∈ SO(n+ 1), then there is a invertible matrix P such that PAP−1 has the form
(

n+1
2

)
many 2× 2 matrices of the form

(
cos θ sin θ
− sin θ cos θ

)
along the diagonal, 1 in the last diagonal place

if n is even, and 0 elsewhere. Replacing θ by tθ gives a homotopy H : Id(n+1)×(n+1) ≃ PAP−1. So,
the required homotopy is P−1HP. Antipodal map on Sn homotopic to identity map if n is odd.

Theorem 38 There is a deformation retract of GL(n,R) onto O(n).

Proof. Here we show there is a deformation retract of GL(2,R) onto O(2). Let A := [A1 : A2] ∈
GL(2,R). Let O := [O1 : O2] be the orthogonal matrix obtained from A by the Gram-Schmidt
process. That is

O1 =
A1

||A1||
, O2 =

A2 − ⟨A2,A1⟩
||A1||2 A1∣∣∣∣∣∣A2 − ⟨A2,A1⟩
||A1||2 A1

∣∣∣∣∣∣ .
That is we can write O1 = λ11A1 and O2 = λ21A1 + λ22A2 with λkk > 0 for k = 1, 2. So, consider
the homotopy, H : GL(2,R) × [0, 1] → GL(2,R) given by

H(A, t) :=
[
(tλ11 + 1 − t)A1 : tλ21A1 + (tλ22 + 1 − t)A2

]
.

Theorem 39 Let n > m be positive integers. WriteSn = {(z,w) ∈ Rm+1×Rn−m : |z|2+|w|2 = 1}
and let Sm := {(z,w) ∈ Sn : |w| = 0}. Then Sn\Sm ∼= Rm+1 × Sn−m−1.

Proof. Consider

Φ : Sn\Sm ∋ (z,w) 7−→
(

z
|w|

,
w
|w|

)
∈ Rm+1 × Sn−m−1

with it’s inverse

Ψ : Rm+1 × Sn−m−1 ∋ (a, b) 7−→

(
a√

|a|2 + |b|2
,

b√
|a|2 + |b|2

)
∈ Sn\Sm.
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Theorem 40 Let n > m be positive integers. Let V be an m-dimensional vector subspace of Rn,
and W be it’s complimentary subspace, i.e., Rn = V ⊕ W. Then, Rn\V ∼= V × (W\0).

Proof. Consider the homeomorphism

Φ : Rn\V ∋ v ⊕ w 7−→ (v,w) ∈ V × (W\0).

2 Problems related to fundamental groups

Theorem 41 Let (Xα, xα)α∈A be a collection of pointed topological spaces. Then

π1

(∏
α∈A

Xα, {xα}α∈A

)
∼=
∏
α∈A

π1(Xα, xα).

Proof. Forβ ∈ A, let pβ :
∏

α∈A Xα → Xβ be the projection. DefineΦ : π1
(∏

α∈A Xα, {xα}α∈A
)
→∏

α∈A π1(Xα, xα) as
Φ
(
[f ]
)
= {[pα ◦ f ]}α∈A,

for any loop f : I →
∏

α∈A Xα based at the point {xα}α∈A. Now, for any two loops f , g : I →∏
α∈A Xα based at the point {xα}α∈A we have

Φ
(
[f ] · [g]

)
= Φ

(
[f ∗ g]

)
= {
[
pα ◦ (f ∗ g)

]
}α∈A

= {
[
(pα ◦ f ) ∗ (pα ◦ g)

]
}α∈A = {[pα ◦ f ] · [pα ◦ g]}α∈A = Φ

(
[f ]
)
· Φ
(
[g]
)
.

So, Φ is a group homomorphism.

Now, Φ
(
[f ]
)

= {[pα ◦ f ]}α∈A is trivial element implies for each α ∈ A we have a path-
homotopy Hα : I × I → Xα from the loop pα ◦ f to the constant loop cxα based at xα. Define
H : I × I →

∏
α∈A Xα as H :=

∏
α∈A Hα. Then H defines a path-homotopy from the loop

f =
∏

α∈A pα ◦ f to the constant loop
∏

α∈A cxα based at {xα}α∈A. So, Φ is a monomorphism.

Let fα be a loop in Xα based at xα for each α ∈ A. Consider the loop f :=
∏

α∈A fα in
∏

α∈A Xα
based at {xα}α∈A. Then, Φ

(
[f ]
)
= {[fα]}α∈A, i.e., Φ is epimorphism.

Theorem 42 Let C be a circle and x, y ∈ C be two distinct points. Let f0, f1 : [0, 1] → C be the
paths defined by two distinct arcs of C starting at x and ending at y. Then f0 is not homotopic to
f1 relative to {x, y}.

Proof. On the contrary, let’s assume f0 ≃rel {x,y} f1. Then f0 ∗ f1 ≃rel {x} f1 ∗ f1 by [Kos80, Lemma
14.2] and f1 ∗ f1 ≃rel {x} ϵx by [Kos80, Lemma 14.4], where ϵx is the constant loop based at x.
Thus, f0 ∗ f1 is a loop that traverses the circle once and is homotopic to the ϵx relative to {x}, which
is impossible by [Kos80, Theorem 16.7.]

(
actually f0 ∗ f1 is a generator of π1(C, x) ∼= Z

)
.
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Theorem 43 Prove that the subset S1 × {x0} is a retract of S1 × S1, but that it is not a strong
deformation retract of S1 × S1 for any point x0 ∈ S1. Is it a deformation retract? Is it a weak
deformation retract?

Proof. Consider the retract

r : S1 × S1 ∋ (z,w) 7−→ (z, x0) ∈ S1 × {x0}.

Torus and circle are not homotopy equivalent as π1(S1 × S1) ∼= Z × Z and π1(S1) ∼= Z. Hence,
a circle can’t be a weak retract of torus. In particular, a circle can not be (strong) deformation
retract of a torus.

Here is an alternative way of showing that the circle S1×{x0} is not deformation retract of S1×S1

for any x0 ∈ S1. On the contrary, let r : S1×S1 → S1×{x0} be a retraction and H : S1×S1×[0, 1] →
S1×S1 be a homotopy such that i◦r ≃ IdS1×S1 , where i : S1×{x0} ↪→ S1×S1 is the inclusion. Let
j : {x0} × S1 ↪→ S1 × S1 be the inclusion map and p2 : S1 × S1 ∋ (z,w) 7−→ (x0,w) ∈ {x0} × S1.
Now, i ◦ r ≃ IdS1×S1 =⇒ p2 ◦ i ◦ r ◦ j ≃ p2 ◦ IdS1×S1 ◦ j = p2 ◦ j. But, p2 ◦ i is a constant map and
p2 ◦ j is the identity map of {x0} × S1. Thus, identity map of {x0} × S1 is null-homotopic, i.e.,
IdS1 is also null-homotopic. By Theorem 1, we have a retraction D2 → S1, which is impossible,
see [Cha03, Theorem 1] for a purely point set topological proof of no retraction theorem.

Theorem 44 Let X be a path-connected space having an abelian fundamental group. Let
x1, x2 ∈ X. Now, for any two paths α, β from x1 to x2 we have α# = β# : π1(X, x1) → π1(X, x2).

Proof. To prove this, let [f ] ∈ π1(X, x1) then,

α#
(
[f ]
)
=
[
α ∗ f ∗ α

]
=
[
α ∗ f ∗ β ∗ β ∗ α

]
=
[
α ∗ f ∗ β

][
β ∗ α

]
=
[
β ∗ α

][
α ∗ f ∗ β

]
=
[
β ∗ α ∗ α ∗ f ∗ β

]
=
[
β ∗ f ∗ β

]
= β#

(
[f ]
)
.

Theorem 45 Let X be a path-connected space. Suppose for any two points x1, x2 ∈ X and any
two paths α, β in X from x1 to x2 we have α# = β#. Then, the fundamental group of X is abelian.

Proof. Let [f ] ∈ π1(X, x1) and α be a path from x1 to x2. Define β := f ∗ α. Now, for any
[g] ∈ π1(X, x1) we have β#

(
[g]
)
= α#

(
[g]
)

from the hypothesis. In other words,

β#
(
[g]
)
=
[
β ∗ g ∗ β

]
=
[
f ∗ α ∗ g ∗ f ∗α

]
=
[
α ∗ f ∗ g ∗ f ∗α

]
is same as α#

(
[g]
)
=
[
α ∗ g ∗α

]
.

=⇒ [f ]−1[g][f ] =
[
f ∗ g ∗ f

]
= α#

([
α ∗ f ∗ g ∗ f ∗ α

])
= α#

([
α ∗ g ∗ α

])
= [g].

Theorem 46 All paths with the same endpoints are homotopic in a simply connected space X.

Proof. Let α, β be two paths starting at x ∈ X and end at y ∈ X. Then,

α ≃rel {0,1} α ∗ cy ≃rel {0,1} α ∗ (β ∗ β) ≃rel {0,1} (α ∗ β) ∗ β ≃rel {0,1} cx ∗ β ≃rel {0,1} β.

So, we are done.
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Definition 47 A pointed space (X, x0) is called an H-space if there is a map m : X ×X → X with
m(x0, x0) = x0 such that we have two homotopies

H1 : m(x0,−) ≃rel x0 IdX and H2 : m(−, x0) ≃rel x0 IdX.

Theorem 48 The fundamental group of an H-space (X, x0) is abelian.

Proof. Let α, β be any two loops based at x0 and cx0 be the constant loop based at x0. Here,
m(α, β) is a loop based at x0 defined as m(α, β)(s) := m

(
α(s), β(s)

)
for 0 ≤ s ≤ 1. Similarly,

m(x0, β) is a loop in X based at x0 defined as m(x0, β)(s) := m
(
x0, β(s)

)
for all 0 ≤ s ≤ 1.

Notice that β ≃rel x0 m(x0, β). To prove this consider

F : [0, 1] × [0, 1] ∋ (s, t) 7−→ H1
(
β(s), 1 − t

)
∈ X.

Then F (−, 0) = H1
(
β(−), 1

)
= β(−) and F (−, 1) = H1

(
β(−), 0

)
= m

(
x0, β(−)

)
. Thus

F : β ≃rel x0 m(x0, β).

Similarly, α ≃rel x0 m(α, x0).

Now, if Gα : cx0 ∗ α ≃rel x0 α and Gβ : β ∗ cx0 ≃rel x0 β, then

[0, 1] × [0, 1] ∋ (s, t) 7−→ m
(
Gα(s, t),Gβ(s, t)

)
∈ X

is a homotopy relative to {x0} from m(cx0 ∗ α, β ∗ cx0) to m(α, β).

Thus
β ∗ α ≃rel x0 m(x0, β) ∗ m(α, x0) = m(cx0 ∗ α, β ∗ cx0) ≃rel x0 m(α, β).

Similarly,

m(α, β) ≃rel x0 m(α ∗ cx0 , cx0 ∗ β) = m(α, x0) ∗ m(x0, β) ≃rel x0 α ∗ β.

So, we are done.

Lemma 49 [Eckmann-Hilton Argument] Let X be a set with two binary operations, which we
will write ◦ and ⊗, and suppose

1. there are elements 1◦, 1⊗ ∈ X such that 1◦ ◦ a = a = a ◦ 1◦ and 1⊗ ⊗ a = a = a ⊗ 1⊗
for all a ∈ X.
2. (a ⊗ b) ◦ (c ⊗ d) = (a ◦ c) ⊗ (b ◦ d) for all a, b, c, d ∈ X.

Then ◦ and ⊗ are the same and, in fact, commutative and associative.

Proof. First, observe that the units of the two operations coincide: 1◦ = 1◦ ◦ 1◦ = (1⊗ ⊗ 1◦) ◦
(1◦ ⊗ 1⊗) = (1⊗ ◦ 1◦) ⊗ (1◦ ◦ 1⊗) = 1⊗ ⊗ 1⊗ = 1⊗.
Now, let a, b ∈ X. Then, a ◦ b = (1⊗ a) ◦ (b⊗ 1) = (1 ◦ b)⊗ (a ◦ 1) = b⊗ a = (b ◦ 1)⊗ (1 ◦ a) =
(b ⊗ 1) ◦ (1 ⊗ a) = b ◦ a. This establishes that the two operations coincide and are commutative.
Now, For associativity, let a, b, c ∈ X. Then (a⊗ b)⊗ c = (a⊗ b)⊗ (1⊗ c) = (a⊗ 1)⊗ (b⊗ c) =
a ⊗ (b ⊗ c). So, we are done.
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Theorem 50 Let (G, •) be a topological group with identity element e. Then, π1(G, e) is abelian.

Proof. To prove this, we apply the Eckmann-Hilton argument on the set
[
(I, ∂I), (G, e)

]
of all

relative-homotopy classes of loops based at e with two binary operations. So, for two loops α, β
of G based at e consider two operations ◦ and ⊗ defined as follows:

(
α ◦ β

)
(t) := α(t)•β(t) for t ∈ [0, 1] and

(
α⊗ β

)
(t) :=

{
α(2t) if 0 ≤ t ≤ 1

2 ,

β(2t − 1) if 1
2 ≤ t ≤ 1.

Now, these operations induce two operations on
[
(I, ∂I), (G, e)

]
. Note that the second operation

gives the fundamental group based at e.

Theorem 51 Give an example of an injective (surjective) continuous map φ : X → Y for which
φ∗ is not injective (surjective).

Proof. Consider S1 ↪→ D and [0, 1] ∋ t 7−→ e2πit ∈ S1.

Theorem 52 [Hat02, Exercise 13 Chapter 1.1] Given a space X, a path connected subspace A
and a0 ∈ A, show that the map i∗ : π1(A, a0) → π1(X, a0) induced by the inclusion i : A ↪→ X is
surjective if and only if every path in X with end points in A is homotopic to a path in A.

Proof. Suppose, the inclusion induced map i∗ : π1(A, a0) → π1(X, a0) is surjective and α : I → X
be a path with α(0), α(1) ∈ A. Since, A is path-connected we have a path β : I → A from
α(1) to α(0). Therefore, α ∗ β is a loop in X based at α(0). Since, π1(A, a0) ∼= π1

(
A, α(0)

)
and π1(X, a0) ∼= π1

(
X, α(0)

)
, the inclusion induced map π1

(
A, α(0)

)
→ π1

(
X, α(0)

)
is also

surjective. So, there is a loop γ : I → A based at α(0) such that γ ≃rel {0,1} α ∗ β, this implies
γ ∗ β ≃rel {0,1} α.

Theorem 53 [Hat02, Exercise 7 Chapter 1.1] Let f : S1 × [0, 1] ∋
(
e2πiθ, s

)
7−→

(
e2πi(θ+s), s

)
∈

S1 × [0, 1]. Then f is homotopic to the identity by a homotopy that is stationary on one boundary
circle but not by any homotopy that is stationary on both boundary circles.

Proof. For the first part, consider

H : S1 × [0, 1] × [0, 1] → S1 × [0, 1] given by
(
e2πiθ, s, t

)
7−→

(
e2πi(θ+ts), s

)
for all θ ∈ R.

Suppose there is a homotopy F : S1× [0, 1]× [0, 1] → S1× [0, 1] such that F(−,−, 0) = IdS1×[0,1]

and F(−,−, 1) = f with

F
(
e2πiθ, 0, t

)
=
(
e2πiθ, 0

)
and F

(
e2πiθ, 1, t

)
=
(
e2πiθ, 1

)
for all θ ∈ R, and for all t ∈ [0, 1].

Consider α : [0, 1] → S1 × [0, 1] be given by α(s) := (1, s) for 0 ≤ s ≤ 1. Let Π : S1 × [0, 1] ∋
(z, s) 7−→ z ∈ S1 be the projection map.

Now, Π ◦ α ≡ 1, and Π ◦ f ◦ α(s) = Π ◦ f (1, s) = Π
(
e2πis, s

)
= e2πis for 0 ≤ s ≤ 1,

i.e., Π ◦ f ◦ α : [0, 1] → S1 be a generator of the fundamental group of S1. But, we have a
homotopy G : [0, 1]2 → S1 given by G(s, t) := Π ◦ F

(
α(s), t

)
such that G : 1 ≃rel {0,1} Π ◦ f ◦ α,

contradiction.
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Theorem 54 Let U = {Vi : i ∈ Λ} be an open covering of X by simply-connected open subsets
Vi of X. Suppose,

⋂
i∈Λ Vi ̸= ∅ and for each i, j ∈ Λ the space Vi ∩ Vj is path-connected. Then, X

is simply connected.

Proof. Since X is path-connected, it is enough to show that π1(X, x0) = 0 for some x0 ∈
⋂

i∈Λ Vi.
For a loopα :

(
[0, 1], {0, 1}

)
→ (X, x0), considering the cover {α−1(Vi) : i ∈ Λ} of [0, 1], we have

a partition 0 = t0 < ... < tn = 1 of [0, 1] such that α
(
[tj, tj+1]

)
⊆ Vj ∈ U for j = 0, ..., (n − 1).

Define αj(s) := α
(
(1 − s)tj + stj+1

)
for 0 ≤ s ≤ 1 and j = 0, ..., (n − 1). Then,

α ≃
rel x0

α0 ∗ α1 ∗ α2 ∗ · · · ∗ αn−1

≃
rel x0

α0 ∗
(
β1 ∗ β1

)
∗ α1 ∗

(
β2 ∗ β2

)
∗ α2 ∗ · · · ∗

(
βn−1 ∗ βn−1

)
∗ αn−1

≃
rel x0

(
α0 ∗ β1

)
∗
(
β1 ∗ α1 ∗ β2

)
∗
(
β2 ∗ α2 ∗ β3

)
∗ · · · ∗

(
βn−2 ∗ αn−2 ∗ βn−1

)
∗ (βn−1 ∗ αn−1).

x0

α0

β1

α1

β2

V0

V1

αn−1

βn−1

Vn−1

Here, β1 : [0, 1] → V0 ∩ V1 is a path from x0 to α0(1) = α(t1) = α1(0), hence α0 ∗ β1 is a loop
based at x0 in the simply-connected space V0.
β2 : [0, 1] → V1 ∩V2 is a path from x0 to α1(1) = α(t2) = α2(0), hence β1 ∗α1 ∗β2 is a loop based
at x0 in the simply-connected space V1.
β3 : [0, 1] → V2 ∩V3 is a path from x0 to α2(1) = α(t3) = α3(0), hence β2 ∗α2 ∗β3 is a loop based
at x0 in the simply-connected space V2.

...

βn−1 : [0, 1] → Vn−1 ∩ Vn is a path from x0 to αn−2(1) = α(tn−1) = αn−1(0), hence βn−1 ∗ αn−1 is
a loop based at x0 in the simply-connected space Vn−1. Therefore,

α ≃
rel x0

(
α0 ∗ β1

)
∗
(
β1 ∗ α1 ∗ β2

)
∗
(
β2 ∗ α2 ∗ β3

)
∗ · · · ∗

(
βn−2 ∗ αn−2 ∗ βn−1

)
∗ (βn−1 ∗ αn−1)

≃
rel x0

cx0 ∗ cx0 ∗ cx0 ∗ · · · cx0 ∗ cx0 = cx0
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Definition 55 For a topological space X, the cone CX is defined as

CX :=
X × [0, 1]

(x, 0) ∼ (x′, 0)

Theorem 56 For a topological space X, the cone CX is contractible.

Proof. Consider H : CX × [0, 1] ∋ ([x, t], s) 7−→ [x, t(1 − s)] ∈ CX.

Theorem 57 The cone CSn is homeomorphic to Dn+1.

Proof. Consider the surjective map g : Sn × [0, 1] ∋ (x, t) 7−→ tx ∈ Dn+1, it sends Sn × 0 to
0 ∈ Dn+1. So, we have a continuous bijective map f : CSn → Dn+1. Since, CSn is compact and
Dn+1 is Hausdorff, f is a homeomorphism.

Theorem 58 A map f : X → Y is null-homotopic if and only if it can be extended to a map
f̃ : CX → Y .

Proof. To prove only if direction, let H : f ≃ cy for some y ∈ Y . Then consider

X × [0, 1]

CX = X×[0,1]
(x,1)∼(x′,1) Y

Hq

f̃

Now, to prove if direction notice that the composition i : X ∋ x 7−→ [x, 1] ∈ CX and f̃ : CX → Y
is f , and CX is contractible.

Definition 59 The suspension ΣX of a space X is defined as

ΣX :=
X × [0, 1]

(x, 0) ∼ (x′, 0) and (y, 1) ∼ (y′, 1)
.

Theorem 60 ΣSn ∼= Sn+1.

Proof. Consider the map g : Sn × [0, 1] → Sn+1 defined by g(x, t) := (x sin πt, cos πt) to show
ΣSn is homeomorphic to Sn+1.

Remark 61 If X is path-connected, then by Theorem 54, ΣX is simply connected as the cone over
any space is contractible. In particular, Sn, n ≥ 2 is simply-connected. Note that S1 = Σ{±1} is
not simply-connected.

Theorem 62 [Hat02, Exercise 2 Chapter 1.2] Let X be the union of convex open sets X1, ...,Xn

such that Xi ∩ Xj ∩ Xk ̸= ∅ for all i, j, k. Then, X is simply connected.

Proof. For n = 2, consider the Theorem 54. Now, note that for every 1 ≤ m ≤ n − 1, the space(
X1 ∪ ... ∪ Xm

)
∩ Xm+1 = (X1 ∩ Xm+1) ∪ ... ∪ (Xm ∩ Xm+1) is path connected. So, we are done by

induction.
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Theorem 63 [Lee11, Theorem 7.21.] The fundamental group of a topological manifold M is at
most countable.

Proof. Consider a cover U of M by countable many open sets, each of which is homeomorphic
to Rn. Now, the intersection of any two such open sets has at most countably many components,
so picking up a point from each component of each intersection, we have an at most countable set
C . Next, for any such open set U ∈ U and x, x′ ∈ C ∩ U, consider a path hU

x,x′ in U from x to x′.
Fix, p ∈ C . There are at most countably many loops based at p which are finite concatenation of
paths of the form hU

x,x′ .
Next, let α be any loop based at p. By Lebesgue Number Lemma we have a partition 0 = t0 <

t1 < · · · < tn−1 < tn = 1 of [0, 1] such that each αk := α|[tk−1, tk] has image contained in one of
the element Uk of U .

αk

Uk

hUk
xk−1,xk

xk−1

xk

fk−1

fk

α(tk−1)

α(tk)

Uk+1Uk−1

Find a point xk ∈ C such that α(tk) and xk lie in same component of Uk ∩ Uk+1 and choose a path
fk from xk to α(tk). We also take, xk = p for k = 0, n and fk to be constant path based at xk for
k = 0, n. Now,

α ≃rel p α1∗α2∗...∗αn−1∗αn ≃rel p
(
f0∗α1∗f 1

)
∗
(
f1∗α2∗f 2

)
∗...∗

(
fn−2∗αn−1∗f n−1

)
∗
(
fn−1∗αn∗f n

)
≃rel p hU1

x0,x1
∗ hU2

x1,x2
∗ ... ∗ hUn−1

xn−2,xn−1
∗ hUn

xn−1,xn
as each Uk is simply-connected.

So, we are done.

Theorem 64 Consider the action of Z on Rm\0 given by n · x := 2nx. Then, (Rm\0)
/
Z ∼=

Sm−1 × S1.

Proof. Define f : (Rm\0)
/
Z → Sm−1 × S1 by

[x] 7−→
(

x
|x|
, exp

(
2πi log2 |x|

))
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with inverse g : Sm−1 × S1 → (Rm\0)
/
Z given by

g(z, e2πit) :=

{[
2tz
]

if 0 ≤ t < 1,

[z] if t = 1.

Corollary 65 If m ≥ 3, then Rm\0 is simply-connected, hence homeomorphic to the universal
cover of Sm−1 × S1.

Definition 66 Let X be a space. Two maps f0, f1 : S1 → X are said to be freely homotopic if
there is a map H : S1 × [0, 1] → X such that H(−, 0) = f0 and H(−, 1) = f1. Note that being
freely homotopic is an equivalence relation on the set of all maps from S1 to X. The set of all
equivalence classes will be denoted by [S1,X].

Lemma 67 Let X be a path-connected space and x0 ∈ X. Consider a map α : S1 → X. Then
there is a map β : (S1, 1) → (X, x0) such that α, β are freely homotopic.

Proof. Consider a path f : [0, 1] → X with f (0) = x0 and f (1) = α(1). Define H : S1×[0, 1] → X
as follows:

H(e2πis, t) :=


f (t + 3s) if 0 ≤ s ≤ 1−t

3 ,

α ◦ exp
(

2πi · 3
1 + 2t

(
s − 1 − t

3

))
if 1−t

3 ≤ s ≤ 2+t
3 ,

f
(

1 − 3
(

s − 2 + t
3

))
if 2+t

3 ≤ s ≤ 1.

Notice that H is well-defined continuous map. Note that as defined, e2πis = 1 if and only if
s = 0, 1. Now, define β := H(−, 0). Also, H(−, 1) = α. So, we are done.

Lemma 68 Let X be a space and x0 ∈ X. Suppose [β] = [γ] · [α] · [γ]−1 in π1(X, x0). Then α, β
are freely homotopic.

Proof. Define H : S1 × [0, 1] → X as follows:

H(e2πis, t) :=


γ ◦ exp

(
2πi · (t + 3s)

)
if 0 ≤ s ≤ 1−t

3 ,

α ◦ exp
(

2πi · 3
1 + 2t

(
s − 1 − t

3

))
if 1−t

3 ≤ s ≤ 2+t
3 ,

γ ◦ exp
(

2πi ·
(

1 − 3
(

s − 2 + t
3

)))
if 2+t

3 ≤ s ≤ 1.

Notice that H is well-defined continuous map. Note that as defined, e2πis = 1 if and only if
s = 0, 1. Now, β = H(−, 0) and H(−, 1) = α. So, we are done.

Lemma 69 Let X be a space and x0. Suppose α, β : (S1, 1) → (X, x0) are two freely homotopic
maps. Then, there is map γ : (S1, 1) → (X, x0) such that

[β] = [γ] · [α] · [γ]−1 in π1(X, x0).
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Proof. Consider a free homotopy H : S1 × [0, 1] → X from β = H(−, 0) and α = H(−, 1).
Notice that H(1, 0) = β(1) = x0 = α(1) = H(1, 1). Define a map γ : (S1, 1) → (X, x0) as

γ(e2πit) := H(1, t) for 0 ≤ s ≤ 1.

Now, consider the map H : S1 × [0, 1] → X defined by

H(e2πis, t) :=


H(1, 3s) if 0 ≤ s ≤ t

3 ,

H
(

exp
(

2πi · 3s − t
3 − 2t

)
, t
)

if t
3 ≤ s ≤ 3−t

3 ,

H
(
1, 3 − 3s

)
if 3−t

3 ≤ s ≤ 1.

Notice that H is a well-defined continuous map with H(−, 0) = β and H(−, 1) = γ ∗ α ∗ γ such
that H(1, t) = x0 for all t ∈ [0, 1].

Theorem 70 [Hat02, Exercise 6 Chapter 1.1] Let X be a path-connected space and x0 ∈ X.
Define conjugacy equivalence relation on π1(X, x0) as follows: Two elements α, β ∈ π1(X, x0) are
said to be equivalent if and only if there is an element γ ∈ π1(X, x0) such that α = γβγ−1. We
will denote this conjugacy equivalence relation by ∼. Then there is a bijection

π1(X, x0)
∼

−→ [S1,X]

Proof. Define Φ : π1(X, x0) → [S1,X] as

Φ
(
[f ]
)
= cls(f ) for [f ] ∈ π1(X, x0).

That is, for a map f : (S1, 1) → (X, x0) we are sending the loop-homotopy class [f ] ∈ π1(X, x0) of
f to the free-homotopy class of f , i.e., we are ignoring the base-points to define Φ. Clearly, Φ is
well-defined.

Now, Lemma 67 says thatΦ is surjective. Also, Lemma 68 says thatΦ induces a map
π1(X, x0)

∼
−→

[S1,X]. Finally, Lemma 69 gives that this induced map is an injection.

Theorem 71 Let C∗ := C \ {0}. Consider the homeomorphism φ : C∗ ∋ z 7−→ −z ∈ C∗. Then
the orbit space C∗/{φ, Id} ∼= {z ∈ C : Re(z) ≥ 0}.

Proof. Consider the map f : C∗/{φ, Id} −→ {z ∈ C : Re(z) ≥ 0} defined by

f
(
[z]
)

:=

{
z if Re(z) ≥ 0,

−z otherwise.

with inverse
g : {z ∈ C : Re(z) ≥ 0} ∋ z 7−→ [z] ∈ C∗/{φ, Id}

Theorem 72 Let C∗ := C \ {0}. Consider the homeomorphism φ : C∗ ∋ z 7−→ 2z ∈ C∗. Then
the orbit space C∗/⟨φ⟩ is Klein bottle.

19



Proof. Notice that C∗ ∋ z 7−→
(

z
|z| , |z|

)
∈ S1 × (0,∞) is a homeomorphism, and φ is equivalent

to Φ : S1 × (0,∞) ∋ (eiθ, r) 7−→ (e−iθ, 2r) ∈ S1 × (0,∞). Now,

C∗

⟨φ⟩
∼=

S1 × (0,∞)
⟨Φ⟩

∼=
S1 × [1, 2]

(z, 1) ∼ (z, 2)

is the Klein bottle.

3 Problems related to covering spaces

Theorem 73 The exponential map exp: C → C \ {0} is a covering map.

Proof. Consider the homeomorphism φ : R2\{0} ∋ (r cos θ, r sin θ) 7−→ (er, eiθ) ∈ (0,∞) × S1.
Now, the covering map is the following composition

C = R2 ∋ (x, y)
homeomorphism × covering map−−−−−−−−−−−−−−−−→ (ex, eiy)

φ−1

−−→ exp(x + iy).

Note that homeomorphism is a covering map, and the product of any two covering maps is a
covering map.

Theorem 74 (Uniformization Theorem) Any simply-connected surface is homeomorphic to
either S2 or R2. That is, the universal cover of any surface is either S2 or R2.

Remark 75 The only surfaces covered by S2 are S2 and RP2. Therefore, any surface other than
S2,RP2; is a K(G, 1) space for some group G.

Theorem 76 [GH81, Theorem 22.14] Any connected non-orientable manifold has a connected
orientable two-fold cover. In other words, the fundamental group of a connected non-orientable
manifold has an index two subgroup.

Remark 77 Below are some illustrations of Theorem 76.

• Covering S2n ∋ x 7−→ {x,−x} ∈ RP2n. Note that RPm is orientable if and only if m is even.

• Covering from annulus to Möbius strip

R× [−1, 1]
(x, y) ∼ (x + 1, y)

∋ [x, y] 7−→ [x, y] ∈ R× [−1, 1]
(x, y) ∼

(
x + 1

2 ,−y
) .

• Covering from Torus to Klein bottle

(
e2πis, e2πit) 7−→ {

[2s, t]K if 0 ≤ s ≤ 1
2 ,

[2s − 1, 1 − t]K if 1
2 ≤ t ≤ 1.

Theorem 78 There is no retraction from the Möbius strip to its boundary circle.
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Proof. Let

Q : [−1, 1] × [−1, 1] −→ M =
[−1, 1] × [−1, 1]
(−1,−y) ∼ (1, y)

be the quotient map. Then, ∂M = Q
(
[−1, 1] × {±1}

)
. Let C := {Q(x, 0) : −1 ≤ x ≤ 1} be the

central circle. Consider inclusion maps i : C ↪→ M and j : ∂M ↪→ M. Let r0 : M ∋ Q(x, y) 7−→
Q(x, 0) ∈ C.
Note that r0 ◦ j : ∂M → C is a two-fold covering map, i.e., after suitable parameterization, we can
say r0 ◦ j : ∂M ∼= S1 ∋ z 7−→ z2 ∈ S1 ∼= C. Hence, (r0 ◦ j)∗ : π1(∂M) → π1(C) is multiplication
by 2.

If possible assume there is a retract r : M → ∂M, then r ◦ j = Id∂M. Now, using Theorem 9

r ◦ (i ◦ r0) ◦ j ≃ r ◦ IdM ◦ j = Id∂M

=⇒
(
r ◦ (i ◦ r0) ◦ j

)
∗ : π1

(
∂M
) ∼= Z ×(±1)−−−→ Z ∼= π1(∂M).

Also,
(
r◦ (i◦ r0)◦ j

)
∗ = (r◦ i)∗ ◦ (r0 ◦ j)∗ that is composition of these two maps (r0 ◦ j)∗ : π1(∂M) ∼=

Z ×2−→ Z ∼= π1(C) and (r◦ i)∗ : π1(C) ∼= Z ×1−→ Z ∼= π1(M), contradicts the fact that
(
r◦ (i◦ r0)◦ j

)
∗

is multiplication by ±1 in Z.

Theorem 79 Let p : S2 → RP2 be the quotient map and Σ be a simple closed curve in RP2.
Then p−1(Σ) is either a simple closed curve or is a union of two disjoint simple closed curves in
S2.

Proof. Let f : [0, 1] → RP2 be a map such that f (s) ̸= f (t) if 0 < s, t < 1 and f (0) = f (1), and
im(f ) = Σ. Write [x] := f (0) = f (1) for some x ∈ S2.

Now, let f +, f − : [0, 1] → S2 be the lifts of f with f +(0) = x and f −(0) = −x. Note that
p−1
(
[a]
)
= {a,−a} for every a ∈ S2. By uniqueness of lifting, f + = −f −.

Observation. If 0 < s, t < 1, then f (s) ̸= f (t), thus f +(s) ̸= f +(t) and f −(s) ̸= f −(t), and
f +(s) ̸= f −(t) as pf + = f = pf −.

Now, we have to consider two cases, namely f +(1) = −x and f +(1) = x.

(1) Since f +(1) = −x = f −(0), define g := f + ∗ f −. By the above Observation, g(s) ̸= g(t) if
0 < s, t < 1. Thus g is a simple loop based at x with im(g) = im(f +) ∪ im(f −) = p−1(Σ).

(2) Now, consider the case when f +(1) = x. Thus, by the above Observation, we can say
that f −(s) ̸= f +(t) if 0 ≤ s, t ≤ 1, i.e., both f + and f − gives disjoint simple loops. Since
im(f +) ∪ im(f −) = p−1(Σ), we are done.

Definition 80 Here we define Pullback in the category Top. Define A ×B Y := {(a, y) ∈
A×Y|f (a) = g(y)} and let g, f be the restrictions of the projections on first and second components,
respectively.
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Z

A ×B Y Y

A B

k

∃! ℓ

h

g

f

g

f

Then given any h : Z → Y and k : Z → A with g◦h = f ◦ k, we have a unique map ℓ : Z → A×B Y
such that following diagram commutes. Actually, ℓ : Z ∋ z 7−→

(
k(z), h(z)

)
∈ A ×B Y does the

job.

Lemma 81 Let g : Y → B be a homeomorphism and f : A → B be a map. Then g : A ×B Y → A
is a homeomorphism.

Proof. Take Z = A, k = IdA, h = g−1 ◦ f . Then, ℓ = (IdA, g−1 ◦ f ) and g ◦ ℓ = IdA. Now,
ℓ ◦ g(a, y) = ℓ(a) =

(
a, g−1 ◦ f (a)

)
= (a, y), i.e., ℓ ◦ g = IdA×BY .

Theorem 82 Let g : Y → B be a covering map. Then g : A ×B Y → A is also a covering.

Proof. Take an admissible open subset U of B, and write g−1(U) =
⊔

i Vi with g|Vi
∼=−→ U. Then,

g−1(f −1(U)
)
= f

−1(
g−1(U)

)
=
⊔

i

f
−1

(Vi).

Now, g|f −1
(Vi)

∼=−→ f −1(U) is the pull-back of the homeomorphism g|Vi
∼=−→ U, so we are done by

Lemma 81.

Theorem 83 Let g : Y → B and f : A → B are covering maps. Then f : A ×B Y → Y is also a
covering.

Proof. Take an open subset U of B such that g−1(U) =
⊔

i Vi and f −1(U) =
⊔

j Wj with g|Vi
∼=−→ U

and f |Wj
∼=−→ U (note an open subset of an admissible set is also admissible). Then,⊔

j

g−1(Wj) = g−1(f −1(U)
)
= f

−1(
g−1(U)

)
=
⊔

i

f
−1

(Vi)

=⇒ f
−1(

g−1(U)
)
=
⊔
i,j

f
−1

(Vi) ∩ g−1(Wj)

Now, g|f −1
(Vi)

∼=−→ f −1(U) is a homeomorphism as it is the pull-back of the homeomorphism
g|Vi

∼=−→ U, see Lemma 81. Therefore, g|f −1
(Vi) ∩ g−1(Wj)

∼=−→ f −1(U) ∩ Wj = Wj is a homeo-
morphism for each i, j. Also, g|Vi

∼=−→ U and f |Wj
∼=−→ U are homeomorphisms, i.e., we have the

following commutative diagram, where three arrows are homeomorphisms:

f
−1

(Vi) ∩ g−1(Wj) Vi

Wj U

g

f

g

f
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Thus f |f −1
(Vi) ∩ g−1(Wj) → Vi is also a homeomorphism, i.e., g−1(U) is an admissible open set

of the covering f with the sheets
{

f
−1

(Vi) ∩ g−1(Wj) : i, j
}

.

Theorem 84 Let p : E → X be a covering map and X is connected, then #p−1(x) = #p−1(x′) for
all x, x′ ∈ X.

Proof. Let x0 ∈ X and consider the set S := {x ∈ X|#p−1(x) = #p−1(x0)}. Then S is non-empty.
Now, for x ∈ S and and an evenly covered open nbd V of x write q−1(V) =

⊔
i∈Λ

Ui where each

Ui is open in E with q|Ui → V is a homeomorphism for each i ∈ Λ. Now, for each y ∈ V we
have q−1(y) ∩ Ui is singleton, i.e., #q−1(y) = #λ = #q−1(x), hence, V ⊆ S. So, S is open in X.
Similarly, X \ S is open in X. Since, X is connected, S = X.

Theorem 85 Let p : E → X be a covering and f , g : Y → E be such that p ◦ f = p ◦ g. Then the
set of all points of Y where f and g agree, is a clopen subset of Y .

Theorem 86 Let (X, •) be a topological group with identity element x0, and p : (E, e0) → (X, x0)
be a covering map such that E connected, locally path-connected. Then there is a unique structure
of topological group on E for which e0 is the identity element, and p is a group-homomorphism.

Proof. Let m : X × X ∋ (x1, x2) 7−→ x1•x−1
2 ∈ X. We wish to lift m ◦ (p × p).

(E, e0)

(
E × E, (e0, e0)

) (
X × X, (x0, x0)

)
(X, x0)

p

p×p

∃! m′

m

The criterion of existence of m′ is

m∗(p × p)∗π1
(
E × E, (e0, e0)

)
⊆ p∗π1(E, e0).

This is equivalent to say that for any two loops σ, τ in E based at e0, the loop Γ : [0, 1] ∋ t 7−→(
p ◦σ(t)

)
•
(
p ◦ τ (t)

)−1 ∈ X based at x0 is relatively homotopic to p ◦ γ for some loop γ in E based
at e0, i.e., Γ ≃rel x0 p ◦ γ. But we know that Γ ≃rel x0 (p ◦ σ) ∗ p ◦ τ = p ◦ (σ ∗ τ ). So, our required
γ = σ ∗ τ .

3.1 Schematic construction of the universal cover of wedge

We follow the argument given in [Kup]. Let X and Y be two good spaces, e.g., CW-complexes,
topological manifolds, etc. We are interested in finding the universal cover of X ∨ Y . We will
describe the drawing of the universal covering for a particular case, namely when the universal
cover p : X̃ → X is a 3-fold cover and q : Ỹ → Y is a 5-fold cover. The general case is analogous.
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3-fold

Universal Cover

5-fold

Universal Cover

X̃

X Y

Ỹ

Step 0: Here, X ∨ Y is the space obtained from X ⊔ Y identifying red base-point of X with blue
base-point of Y . In the figure the fibers p−1(•) and q−1(•) are illustrated.

Step 1: Take a copy of Ỹ and at each point q−1(•) add a copy of X̃ using a point of p−1(•). Call
this space as A1. So, we now have a total of 10 red free vertices in the space A1.

Step 2: At each red free-vertex of A1 attach a copy of Ỹ using a point of q−1(•). Call this space
as A2. So, we now have a total of 40 blue free vertices in the space A2.
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Step 3: At each blue free-vertex of A2 attach a copy of X̃ using a point of p−1(•). Call this space
A3.

Ultimate Step: If we continue (continue until no red/blue free-vertex remains) this way, the
final space X̃ ∨ Y will be the universal cover of X ∨ Y . Now, applying p on each copy of X̃
inside X̃ ∨ Y and applying q on each copy of Ỹ inside X̃ ∨ Y , we have the universal covering map
X̃ ∨ Y → X ∨ Y .

3.2 Examples to illustrate schematic construction

How to Draw, some tips.

• Covering map is a local homeomorphism. So, the local nature of the connected base space
is repeated in the cover, and the number of repetitions is the same as the number of folds of
the covering. In particular, the cardinality of any two fibers will be the same.

• There will be no non-trivial loop in the universal cover.

• Let X be a connected, locally path-connected, semi-locally simply-connected space, and
p : (X̃, x̃0) → (X, x0) be its universal cover. Now, there is a bijection between π1(X, x0) ∼=
π1(X, x0)

p∗π1(X̃, x̃0)
and p−1(x0). In other words, if the fundamental group is an infinite group, then

fiber is infinite.
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(1) Id : S2 ∨ S2 → S2 ∨ S2 is the universal cover

(2) The above map is the universal cover of RP2 ∨ S2

0 1 2-1-2

(3) The above map is the universal cover of S1 ∨ S2
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(4) The above map is the universal cover of RP2 ∨ S1

(5) The above map is the universal cover of RP2 ∨ RP2
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(6) The above map is the universal cover of two S2 having two points in common

(7) The above map is the universal cover
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(8) The above map is the universal cover of S1 ∨ S1
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(9) The above map is the universal cover of S1 ∨ S2 ∨ S1
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(10) The above map is the universal cover
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3.3 Covering spaces of graphs

Definition 87 [Hat02, 1.A Graphs and Free Groups] A Hausdorff space X is called a graph or
one-dimensional CW-complex if the following hold:

•
X =

⊔
i

ei ⊔
⊔

j

vj

where each ei is a subspace of X and each vj is a point of X. Each ei is called an 1-cell or
an edge, and each point vj is called a 0-cell or a vertex.

• For each i we have a continuous map φi : [0, 1] → ei such that φi|(0, 1)
∼=−→ ei and

φi(0), φi(1) ∈
⊔

j vj.

• For a subset A of X we have A ⊆closed X if and only if A ∩ ei ⊆closed ei.

Remark 88 Each {vj} is closed in X as X is Hausdorff.

Lemma 89 Let X be a graph. Any subset of the set of all vertices is a discrete closed subspace
of X.

Proof. Let A be any subset of
⊔

j vj, then A ∩ ei is either empty or two vertices or one vertex. In
other words, A ∩ ei is closed in X, hence in ei also. Therefore, A is closed in X. Since A is an
arbitrary subset of

⊔
j vj, we are done.

Remark 90 Each edge ei is open in X as X\ei is closed in X.

Example/Non-example
∨

i

S1 :=

⊔
i

S1

⊔
i

{1}
is a connected graph, where i varies over any non-

empty index set. Under the subspace topology of R2, the Hawaiian Earring is not a CW-complex,
as any compact CW-complex has only finitely many cells.

Theorem 91 [Hat02, Lemma 1.A.3] [Rot88, Theorem 10.43.] Let X be a connected graph
and p : X̃ → X be an n-fold covering map, where n is a positive integer or infinity. Write
X =

⊔
i ei ⊔

⊔
j vj as in the above definition. Then, one can give a CW-complex structure on X̃

such that for each vertex vj, we have exactly n-many vertices in X̃, and for each edge ei we have
exactly n-many 1-cells in X̃. Roughly,

X̃ =
⊔

i

n · ei ⊔
⊔

j

n · vj.

Theorem 92 [Hat02, Exercise 10 Chapter 1.3] Let C be a collection of connected 3-fold cov-
ering maps of S1 ∨ S1 such that no distinct two elements of C are homeomorphic via a Deck-
transformation and given any 3-fold covering map X → S1 ∨S1; there is an element X′ → S1 ∨S1

of C such that X is homeomorphic to X′ via some homeomorphism. Then |C| = 7.

Proof.

32



Roughly, we want to find all connected 3-fold covers of S1 ∨ S1. Note that S1 ∨ S1 has a CW
structure with one vertex and two edges.

Step 1: So, every 3-fold cover has a CW-structure with three vertices

(1) (2) (3)

Step 2: Also, every 3-fold cover has a CW-structure with three red edges. Since the end(s) of
an edge is either a single vertex or two distinct vertices, (1), (2), (3) are the only possibilities
of attaching three red edges to three black vertices. Note that a small nbd of the wedge point of
S1 ∨ S1 is a wedge of four small arcs, out of which two are red arcs, and two are blue arcs.

(1.1.)

(1.2.)

Step 3: Like red edges, every 3-fold cover has a CW-structure with three blue edges. Considering
only (1) from step 2, we have two possibilities of attaching three blue edges. Again, note that a
small nbd of the wedge point of S1 ∨ S1 is a wedge of four small arcs, out of which two are red
arcs, and two are blue arcs. Notice that this pattern is repeated thrice near each black wedge point
of the covers (1.1.) and (1.2.)
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(2.1.) (2.2.)

(2.3.)

(2.4.)

Step 4: Like red edges, every 3-fold cover has a CW-structure with three blue edges. Considering
only (2) from step 2, we have four possibilities of attaching three blue edges. Again, note that a
small nbd of the wedge point of S1 ∨ S1 is a wedge of four small arcs, out of which two are red
arcs, and two are blue arcs. Notice that this pattern is repeated thrice near each black wedge point
of the covers (2.1.), (2.2.), (2.3.) and (2.4.)

Step 5: Like red edges, every 3-fold cover has a CW-structure with three blue edges. Considering
only (3) from step 2, we have exactly one possibility of attaching three blue edges. Again, note
that a small nbd of the wedge point of S1 ∨ S1 is a wedge of four small arcs, out of which two are
red arcs, and two are blue arcs. Notice that this pattern is repeated thrice near each black wedge
point of this cover.

This shows C can have at least 7 elements (one needs to check that the above covers are pairwise
non-isomorphic; note that the last cover is homeomorphic to cover of 2.2. but not via a Deck-
transformation, see Remark 96). Notice that at each step, we have considered all possibilities of
attaching an edge to a vertex or two vertices. Thus, C can have at most 7 elements.

Theorem 93 [Hat02, Exercise 10 Chapter 1.3] Let C be a collection of connected 2-fold cov-
ering maps of S1 ∨ S1 such that no distinct two elements of C are homeomorphic via a Deck-
transformation and given any 2-fold covering map X → S1 ∨S1; there is an element X′ → S1 ∨S1

of C such that X is homeomorphic to X′ via some homeomorphism. Then |C| = 3.

34



Theorem 94 Let p : (X, x0) → (B, b0) be a finite-covering space such that X is path-connected.
The following are equivalent:

• The covering is regular: for every x, x′ ∈ p−1(b0) we have a deck transformation (a
homeomorphism, h : X → X with p ◦ h = p) such that h(x) = x′.

• p∗π1(X, x0) is a normal subgroup of π1(B, b0).

• The number of deck transformations is same as #p−1(b0).

Remark 95 All 2-fold path-connected covers are regular as index-two subgroups are normal.

Remark 96 Consider any finite-fold cover of S1 ∨ S1. A deck transformation d sends

• a vertex to a vertex,

• blue (resp. red) edges to a blue (reps. red) edges,

• an edge e with end-points P,Q to the edge d(e) with end-points d(p) and d(Q),

• a loop l to the loop d(l).

The 3-fold covers (1.1.) and (1.2.) are irregular as each of these contains only one red loop.
Similarly, the 3-fold covers (2.3.) and (2.4.) are irregular as each of these contains only one blue
loop. But, the covers (2.1.), (2.2.), and (3.1.) are regular.

Definition 97 For a finite graph X, i.e., the number of 1-cells and the number of 0-cells both are
finite; define Euler characteristic as

χ(X) := number of vertices − number of edges.

Remark 98 If p : X̃ → X is an n-fold covering then χ(X̃) = n · χ(X)

Definition 99 Let X be a graph, a subspace Y of X is said to be a sub-graph of X if Y can be
written as a union of edges and vertices of X such that if the edge ei ⊆ Y then ei ⊆ Y . Note that a
sub-graph itself is a graph.

Definition 100 A simply connected graph is called a tree. One can show a tree is contractible.
Roughly, a tree doesn’t contain a non-trivial loop.

Definition 101 A sub-graph T of X is called a maximal tree if the graph T is a tree and T contains
all the vertices of X.

Theorem 102 [Hat02, Proposition 1.A.1] Using the axiom of choice, one can show that every
connected graph contains a maximal tree.

Theorem 103 [Hat02, Proposition 1.A.2] Let X be a connected graph with a base-vertex v0. Fix
an orientation on each edge. Let T be a maximal tree of X. Then each edge ei ⊆ X\T determines
a loop ℓi in X based at v0 as follows: starting from v0 go to a vertex of ei by a path in T , then cross
ei following its orientation, then back to v0 by a path in T . Then,

π1(X, v0) = ⟨[ℓi] : where ℓi is the loop corresponding to the oriented edge ei ⊆ X\T⟩.
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4 Lifting Problems

Theorem 104 Let p : (E, e0) → (X, x0) be a covering map and and H : [0, 1]2 → X be a map
such that H(0, 0) = x0. Then there exists a map H̃ : [0, 1]2 → E with H̃(0, 0) = e0 such that the
following diagram commutes.

(E, e0)

(
[0, 1] × [0, 1], (0, 0)

)
(X, x0)

p

H

∃! H̃

Corollary 105 Suppose H in Theorem 104 is a path homotopy, i.e., H(0,−) = a and H(1,−) = b.
Thus H̃(0,−) maps into the discrete space p−1(a) and H̃(1,−) maps into the discrete space p−1(b).
Therefore, H̃ is also a path homotopy, i.e., H̃(0,−) and H̃(1,−) are constant maps.

Theorem 106 (Monodromy Theorem) Let q : (E, e) → (B, b) be a covering map. Suppose f and
g are paths in B with the same initial point and the same terminal point, and f̃e, g̃e are their unique
lifts with the same initial point e ∈ E. Then,

f̃e ≃rel {0,1} g̃e ⇐⇒ f ≃rel {0,1} g

So, in particular, f ≃rel {0,1} g implies f̃e(1) = g̃e(1).

Proof. For H : f ≃rel {0,1} g and corresponding unique lift H̃ :
(
[0, 1]2, (0, 0)

)
→ (E, e) we can

say f̃e = H̃(−, 0) and g̃e = H̃(−, 1) by the uniqueness of lifting. Note that H̃(0, 1) = g̃e(0) as
H̃
(
0,−) is constants by previous statements.

Theorem 107 Let p : (E, e0) → (B, b0) be a covering such that E is path-connected. Define,

Φ :
π1(B, b0)

p∗π1(E, e0)
∋ cls

(
[f ]
)
7−→ f̃ (1) ∈ p−1(b0)

where f̃ :
(
[0, 1], 0

)
→ (E, e0) is the unique lift of f .

Then Φ is a bijection.

Proof. Φ is well-defined: Suppose, cls
(
[f ]
)
= cls

(
[g]
)

in π1(B,b0)
p∗π1(E,e0) , so write [f ] =

[
(p ◦ h̃) ∗ g

]
,

where h̃ :
(
[0, 1], {0, 1}

)
→ (E, e0). Let f̃ , g̃ :

(
[0, 1], 0

)
→ (E, e0) be the unique lifts of f and g,

respectively. Then, h̃ ∗ g̃ is well-defined and

p ◦ (h̃ ∗ g̃) = (p ◦ h̃) ∗ g.

Since, f̃ , h̃ ∗ g̃ :
(
[0, 1], 0

)
→ (E, e0) and f ≃rel {0,1} (p ◦ h̃) ∗ g we have f̃ ≃rel {0,1} h̃ ∗ g̃.

Φ is injective: Suppose, for cls
(
[f ]
)

and cls
(
[g]
)

in π1(B,b0)
p∗π1(E,e0) we have f̃ (1) = g̃(1) where f̃ , g̃ :(

[0, 1], 0
)
→ (E, e0) be the unique lifts of f and g, respectively. Now,

(̃f ∗ g̃) ∗ g̃ ≃rel {0,1} f̃
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=⇒ p ◦
(
(̃f ∗ g̃) ∗ g̃

)
≃rel {0,1} p ◦ f̃

=⇒
(
p ◦ (̃f ∗ g̃)

)
∗ g ≃rel {0,1} f

=⇒
(
p∗[ f̃ ∗ g̃ ]

)
· [g] = [f ].

Φ is surjective: For any e1 ∈ p−1(b0) choose a path γ : [0, 1] → E with γ(0) = e0 and γ(1) = e1.
Consider f := p ◦ γ. Then, Φ sends cls

(
[f ]
)

to γ(1) = e1.

Corollary 108 Using the injectivity of Φ one can show that for f :
(
[0, 1], {0, 1}

)
→ (B, b0) we

have [f ] ∈ p∗π1(E, e0) ⇐⇒ f lifts to a loop in E based at e0.

Corollary 109 Let n ≥ 2. Considering the 2-fold covering Sn ∋ x 7−→ [x] ∈ RPn and Sn is
simply-connected we have π1(RPn) = Z2. Note that RP1 ∋ [z] 7−→ z2 ∈ S1 is a homeomorphism.

Corollary 110 In Theorem 107, #p−1(b0) = n implies index of p∗π1(E, e0) in π1(B, b0) is n.

Theorem 111 Let X be a path-connected and locally path-connected space such that π1(X) is
finite. Then every f : X → S1 is null-homotopic. In particular, πn(S1) =

[
(Sn, ∗), (S1, 1)

]
is a

trivial group for n ≥ 2.

Proof. Consider the lifting given below; lifting exists as f∗π1(X, x0) is a finite subgroup of Z, so
the algebraic condition of lifting is satisfied as any finite subgroup of Z is the trivial group.

(R, 0)

(X, x0) (S1, 1)

t 7−→exp(2πit)

f

∃! f̃

Now, consider the homotopy H : X × [0, 1] → X given by

H(x, t) := exp
(
2πi · (1 − t)̃f (x)

)
for x ∈ X, t ∈ [0, 1].

Remark 112 Recall that we defined degree of a map f : (S1, 1) → (S1, ∗) as follows: Consider
the map f1 : [0, 1] ∋ t 7−→ f

(
e2πit

)
∈ S1. Then f1(0) = ∗. Let e2πi• = ∗ for some • ∈ R. Now,

consider the unique lift f̃1 :
(
[0, 1], 0) → (R, •), i.e., e2πĩf1(−) = f1. Define,

deg(f ) := f̃1(1) − f̃1(0).

Theorem 113 Every odd map S1 → S1 has an odd degree.

Proof. Now, let f : (S1, 1) → (S1, ∗) be a odd map. Then,

e2iπf̃1(t+ 1
2 ) = f (−e2iπt) = −f (e2iπt) = −e2iπf̃1(t) = e2iπ

(
f̃1(t)+ 1

2

)
for all t ∈ [0, 1].

So there exists m ∈ Z such that

f̃1

(
t +

1
2

)
= f̃1(t) +

1
2
+ m
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Finally,

f̃1(t + 1) − f̃1(t) =
[

f̃1(t + 1) − f̃1

(
t +

1
2

)]
+

[
f̃1

(
t +

1
2

)
− f̃1(t)

]
= 2m + 1

and the degree of f is odd.

Theorem 114 Let n ≥ 2. Then there does not exist φ : Sn → S1 such that φ(−x) = −φ(x) for
all x ∈ Sn.

Proof. Suppose, such a φ : Sn → S1 exists. Then φ null-homotopic by Theorem 111. Consider
the inclusion i : S1 ↪→ Sn. Then φ ◦ i is also null-homotopic. In particular, deg(φ ◦ i) = 0. Also,
φ ◦ i is an odd map, i.e., deg(φ ◦ i) is an odd integer by Theorem 113, a contradiction.

Theorem 115 (Borsuk-Ulam Theorem) If f : Sn → Rn is a map then there exists x ∈ Sn such
that f (−x) = f (x).

Theorem 116 Let G be a group with identity element e, which may or may not have topology,
acting on a simply-connected topological space X such that for each g ∈ G the map X ∋ x 7→
g · x ∈ X is continuous. That’s G acts on X continuously.
Suppose also that G acts discretely, i.e., for each x ∈ X there is an open neighborhood U of x such
that

U ∩ gU = ∅ for all g ∈ G\{e}.

Consider the orbit space X/G := X
x∼g·x with quotient topology obtained from quotient map

q : X → X/G. Choose x0 ∈ X and define Φ : G → π1(X/G, [x0]) by

Φ : g 7−→
[
q ◦ ( path in X from x0 to g · x0)

]
.

Then, Φ is a group isomorphism.

Proof. The quotient map q : X → X/G is a covering map: For any x ∈ X consider a nbd U of x
as above. Then,

q−1(q(U)
)
=
⊔
g∈G

g · U ⊆open X.

Φ is well-defined:Given g ∈ G, let α be a path in X from x0 to g · x0, we have q ◦ α is a loop
in X/G based at [x0] ∈ X/G. For any other path β in X from x0 to g · x0, we have a homotopy
H : α ≃rel {0,1} β as X is simply connected, so q ◦ H : q ◦ α ≃rel [x0] q ◦ β.
Φ is a group homomorphism: For g1, g2 ∈ G, consider a path γ in X from x0 to g1 · x0 and another
path δ in X from x0 to g2 · x0. Then, γ ∗ (g1 · δ) is a path from x0 to (g1g2) · x0.
Φ is surjective: For a loop Γ : [0, 1] → X/G based at [x0]. Then, for any lifting Γ̃ : [0, 1] → X of
Γ we have Γ̃(0) = x0 and Γ̃(1) = g · x0 for some g ∈ G. So, Φ(g) = [Γ].
Φ is injective: Suppose for some g ∈ G and some α : [0, 1] → X from x0 to g · x0 we have

p ◦ α ≃rel [x0] C[x0]

Now,α(0) = x0 = Cx0(0). So, Theorem 106 gives thatα(1) = Cx0(1) so that g·x0 = x0 =⇒ g = e
as group action is discrete.
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Examples

• Consider the group action of Zn on Rn by addition. The orbit space is
(
S1
)n.

• Let n ≥ 2 and consider the {±1} action on Sn as (ε, x) 7→ ε · x. The orbit space is RPn.

• Consider the Z action on R× [−1, 1] given by
(
n, (x, y)

)
7−→

(
x + 1

2n, (−1)ny
)
. The orbit

space is the Möbius strip.

• Let G be the of self-homeomorphisms ofR2 generated by A : R2 ∋ (x, y) 7−→ (x+1, 1−y) ∈
R2 and B : R2 ∋ (x, y) 7−→ (x, y + 1) ∈ R2. Then R2/G =Klein bottle. Note that G is
non-abelian.

• Let p, q ∈ N with gcd(p, q) = 1, p and q no need to be primes. Consider the group action
Zp × S3 → S3 given by (

[k]p, (z1, z2)
)
7−→

(
e

2πik
p z1, e

2πikq
p z2

)
for all (z1, z2) ∈ C2 with |z1|2 + |z2|2 = 1. The orbit space is an orientable 3-manifold,
called lens space, and denoted by L(p, q).

Theorem 117 Let Y := C∗/K where C∗ := C \ {0} and K is the group of homeomorphisms
{φn : n ∈ Z} with φ(z) = 4z. Then, the fundamental group of Y is Z× Z.

Proof.

Theorem 118 (Primary decomposition of finitely generated abelian group) Every finitely gener-
ated abelian group G is isomorphic to a group of the form Zn ⊕Zpℓ1

1
⊕· · ·⊕Zpℓt

t
for some integers

n, t ≥ 0; and primes (not necessarily distinct) p1, ..., pt; and non-negative integers (not necessarily
distinct) ℓ1, ..., ℓt.

Theorem 119 Given any finitely generated abelian group G, we have a path-connected manifold
M such that π1(M) = G.

Proof. Consider Theorem 118 with the manifold M :=
(
S1
)n × L

(
pℓ1

1 , 1
)
× · · · × L

(
pℓt

t , 1
)

Theorem 120 [Hat02, Page 30] [Rot88, Theorem 10.5] Let p : X̃ → X be a covering space and
Y be a connected space. Then, the commutative square on the left has a unique solution, which is
the commutative square on the right.

Y X̃ Y X̃

Y × [0, 1] X Y × [0, 1] X

y 7→(y,0)

f̃

p y 7→(y,0)

f̃

p

F F

∃!F̃
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Theorem 121 [Hat02, Exercise 8 Chapter 1.3] Let X,Y be simply connected covering spaces of
path-connected, locally path-connected spaces X and Y , respectively. Then X ≃ Y implies X ≃ Y .

Proof. Let f : (X, x0) → (Y, y0) be a homotopy-equivalence with h : (Y, y0) → (X, x1) as a
homotopy inverse, i.e., f ◦ h ≃ IdY and h ◦ f ≃ IdX. Let p : (X, x0, x1) → (X, x0, x1) and
q : (Y, y0) → (Y, y0) be the universal covering maps. Consider the two lifts below.

(Y, y0) (X, x1)

(X, x0) (Y, y0) (Y, y0) (X, x1)

q p

fp

fp

hq

hq

Now, fp ◦ hq is a lift of fhq, and F : fhq ≃ q. To see these notice that

q ◦
(
fp ◦ hq

)
=
(
q ◦ fp

)
◦ hq = fp ◦ hq = f ◦

(
p ◦ hq

)
= f ◦ hq and

f ◦ hq = fh ◦ q ≃ IdY ◦ q = q.

Applying Theorem 120 w.r.t the covering q : Y → Y and homotopy F : fhq ≃ q, we have
homotopy lifting F :

(
fp ◦ hq

)
≃ F(−, 1), where q ◦F = F. In particular, q ◦F(−, 1) = q. Then,

F(−, 1) : Y → Y is a homeomorphism, see [Rot88, Corollary 10.15.]. Hence,(
fp ◦ hq

)
≃ F(−, 1) =⇒

(
F(−, 1)

)−1 ◦
(
fp ◦ hq

)
≃ IdY =⇒ hq has a homotopy left-inverse.

Similarly, hq has a right-inverse: p ◦
(
hq ◦ fp

)
= hq ◦ fp = h ◦ fp ≃ IdX ◦ p = p. Applying

Theorem 120 w.r.t. the covering p : X → X and homotopy G : hfp ≃ p we have homotopy lifting
G :
(
hq ◦ fp

)
≃ G(−, 1) with p ◦ G(−, 1) = p. Then G(−, 1) : X → X is a homeomorphism. So,

hq ◦ fp ◦
(
G(−, 1)

)−1 ≃ IdX. Therefore, hq : Y → X is a homotopy-equivalence.

Remark 122 If a square matrix has left and right inverses, then the matrix has THE inverse.

Theorem 123 [Hat02, Exercise 17 Chapter 1.1] There are infinitely many non-homotopic re-
tractions S1 ∨ S1 −→ S1.

Proof. Note that S1 ∨S1 =
(
S1 ×{1}

)⋃ (
{1}×S1

)
. For k ∈ N, define retraction rk : S1 ∨S1 →

S1 × {1} by
rk
(
a, 1
)
= (a, 1) for all a ∈ S1,

rk(1, b) = (bk, 1) for all b ∈ S1.

Hence rk|S1×{1} = IdS1×{1} and rk|{1}×S1 : {1}×S1 → S1×{1} is k-fold covering map. So, rk ̸≃ rl

if k ̸= l.

Theorem 124 [Hat02, Exercise 16.(e) Chapter 1.1] If X is D2 with two points on its boundary
identified and A is its boundary S1 ∨ S1, then there is no retraction from X → A.
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Proof. Let q : D2 → D2

{i,−i}
∼= X be the quotient map. Now, H : D2 × [0, 1] ∋ (x, y, t) 7−→(

(1 − t)x, y
)
→ D2 is a strong deformation retract of D2 onto the line-segment ℓ := {0} × [0, 1].

Thus
H̃ : X × [0, 1] ∋

(
[x, y], t

)
7−→

[
(1 − t)x, y

]
∈ X

is a strong deformation retract of X onto q(ℓ). Now, q(ℓ) ∼= S1 implies π1(X) ∼= Z. So if there
were a retraction r : X → A, the inclusion induced map Z ∗ Z ∼= π1(A) → π1(X) ∼= Z would be
injective, which is impossible as Z ∗ Z is non-abelian.

Theorem 125 The fundamental group of S1 ∨ S1 is non-abelian.

A3(0, 3)

A2(0, 2)

A1
(0, 1)

(0, 0)

B1 B2

(3, 0)(1, 0) (2, 0)

B3

AB

An infinite fold cover of S1 ∨ S1

Proof. Consider the above cover of S1 ∨ S1. Now, define a path Ã ∗ B as follows: Ã ∗ B starts
at (0, 0), then traverses the blue horizontal straight line segment until it reaches (1, 0), and finally
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traverses the B1 loop anti-clockwise once. Similarly, define a path B̃ ∗ A as follows: B̃ ∗ A starts
at (0, 0), then traverses the red straight vertical straight line segment until it reaches (0, 1), and
finally traverses the A1 loop anti-clockwise once. Note that Ã ∗ B and B̃ ∗ A are lifts of A ∗ B and
B ∗ A, respectively starting at (0, 0).

Now, if possible let [A][B] = [B][A] in π1(S1 ∨ S1, p), where p is the wedge point. Thus
A ∗B ≃rel p B ∗A, and by Theorem 106, the endpoint of Ã ∗ Bis the same as the endpoint of B̃ ∗ A,
i.e., (1, 0) = (0, 1), which is impossible. So [A][B] ̸= [B][A], and we are done.
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5 Calculating the fundamental groups of manifolds and CW-
complexes

5.1 Seifert-Van Kampen theorem

Definition 126 Let G be and H be two groups. We consider the set G ∗H of all finite sequences
(x1, ..., xm) such that the following conditions are satisfied:

• each xi lies in one of the groups G or H,

• no xj is the neutral element of G or of H,

• any two consecutive xj’s lie in two different groups.

Here we also allow the empty sequence (). Such sequences are sometimes called reduced words
in G and H.

Now, define a group structure on G ∗H. Given two sequences (x1, ..., xm) and (y1, ..., yn), we stack
them together (x1, ..., xm, y1, ..., yn) and then we delete any occurrence of a subsequence of the
form a, a−1 for a ∈ G or a ∈ H and if a subsequence is of the form a, b with a, b ∈ G or a, b ∈ H,
then we replace it by ab.

We henceforth refer to G ∗ H together with this product structure as the free product of G and H.

Definition 127 For a set S we refer to

⟨S⟩ := free product of the infinite cyclic groups generated by s ∈ S

as the free group on the (generating) set S.

Definition 128 Let G be a group and let A be a subset of G. Define

subgroup of G normally generated by A := A :=
⋂

A⊆H⊴G

H

Definition 129 Let G be a group. A presentation of G is a collection: A set X, a subset R of the

free group ⟨X⟩, and an isomorphism G → ⟨X|R⟩ := ⟨X⟩
R
. If X and R both are finite sets, then we

say G is finitely presented.

Definition 130 Let α : G → A and β : G → B be two group homomorphisms. We define the
amalgamated product A ∗G B of A and B with amalgam G as

A ∗G B :=
A ∗ B

{α(g)β(g)−1|g ∈ G}
.

Definition 131 Let G be a group and let A := {xyx−1y−1|x, y ∈ G}. Define the abelianization
Gab of G as Gab := G

A
.
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Theorem 132 Letα : G → A, β : G → B, β̃ : H → B, and γ : H → C be group homomorphisms.
Now, we have the following:

(1) If G = {e}, then A ∗G B = A ∗ B.

(2) If B = {e}, then A ∗G B = A
α(G)

.

(3) If β is an isomorphism (resp. epimorphism), then the obvious map A → A ∗G B is also an
isomorphism (resp. epimorphism).

(4) (A ∗G B) ∗H C ∼= A ∗G (B ∗H C).

(5) Let φ : H → G be an epimorphism. Using α ◦ φ : H → A and β : φ : H → B, we can talk
about A ∗H B. Now, the natural map A ∗G B → A ∗H B is an isomorphism.

(6) If α and β are both monomorphisms, then the natural homomorphisms A → A ∗G B and
B → A ∗G B are also both monomorphisms.

(7) (G ∗ H)ab
∼= Gab × Hab. In particular, ⟨x1, ..., xn⟩ab

∼= Zn.

Theorem 133 (Seifert-Van Kampen theorem) Let X be a topological space and let X = U∪V be a
decomposition of X in two open subsets U and V such that U∩V is non-empty and path-connected.
Let x0 ∈ U ∩ V . Then there exists an isomorphism Φ : π1(U, x0) ∗π1(U∩V,x0) π1(V, x0) → π1(X, x0)
such that the following diagram commutes:

π1(U ∩ V, x0) π1(U, x0)

π1(V, x0) π1(U, x0) ∗π1(U∩V,x0) π1(V, x0)

π1(x, x0)

Φ

Here all the undercoated maps are the obvious inclusion-induced homomorphisms.

Remark 134 In Theorem 133, the inclusion induced mapsπ1(U, x0) → π1(X, x0) andπ1(V, x0) →
π1(X, x0) gives a surjection π1(U, x0)∗π1(V, x0) → π1(X, x0). In particular, if U and V are simply-
connected, then X is also so.

Remark 135 By Remark 134, the suspension of path-connected space is simply-connected.

Remark 136 Consider Theorem 133 again. If U ∩ V is simply-connected, then the inclusion
induced maps π1(U, x0) → π1(X, x0) and π1(V, x0) → π1(X, x0) gives a bijection π1(U, x0) ∗
π1(V, x0) → π1(X, x0).
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Definition 137 We say a point x in a topological space X is good, if {x} is a closed subset of X
and there exists an open neighborhood U of x such that x is a deformation retract of U.

Remark 138 Every point of a topological manifold or a CW-complex is a good point.

Theorem 139 Let A1 and A2 be two path-connected topological spaces, and let a1 ∈ A and
a2 ∈ A be good points. Then, the inclusion maps induce an isomorphism π1(A1, a1)∗π1(A2, a2)

∼=−→
π1(A1 ∨ A2, a1 = a2).

Proof. We pick an open neighborhood W1 in A1 of that deformation retracts to a1. Furthermore,
we pick an open neighborhood W2 of a2 in A2 that deformation retracts to a2. We consider
U := A1 ∨ W2 ⊆open A1 ∨ A2 and V := W1 ∨ A2 ⊆open A1 ∨ A2. Note that A1 (resp. A2) is a
deformation retract onto U (resp. V) and U ∩ V has a deformation retract onto x0 := {a1, a2} ∈
A1∨A2. Therefore, the inclusion induced maps π1(A1, a1) → π1(U, x0), π1(A2, a2) → π1(V, x0) are
isomorphisms andπ1(U∩V, x0) is trivial. Thus the inclusion induced mapπ1(A1, a1)∗π1(A2, a2) →
π1(U, x0) ∗ π1(V, x0) is an isomorphism. Now, by Remark 136, we are done.

Remark 140 Let n be a positive integer. An induction on n together with Theorem 139, says
that π1

(∨n S1
) ∼= Z ∗ · · · ∗ Z︸ ︷︷ ︸

n-times

.

Theorem 141 Let M be a topological manifold of dimension n ≥ 3. Let p be a point and let
x0 ∈ M \ {p} be a base point. Then, the inclusion induced map π1

(
M \ {p}, x0

)
→ π1(M, x0) is

an isomorphism.

Proof. Since M is locally Rn, pick an open ball B(p, r) ⊆ M of radius r centered at p. Define
U := B(p, r) and V := M \ {p}. Now, U ∩ V = B(p, r) \ {p} ∼= Sn−1 × (0, 1) ≃ Sn−1 is
simply-connected as n ≥ 3. Now, by Remark 136, we are done.

Lemma 142 Let X be a topological space. Furthermore, let A and B be two subsets with
X = A ∪ B. If A ∩ B is a deformation retract of B and if A and B are closed subsets of X, then A is
a deformation retract of X.

Proof. We pick a deformation retraction F : B × [0, 1] → A ∩ B of B onto A ∩ B. Now, define
G : X×[0, 1] → X as G(x, t) = x if (x, t) ∈ A×[0, 1] and G(x, t) = F(x, t) if (x, t) ∈ B×[0, 1].

Theorem 143 (Topological Collar Neighborhood Theorem) Given a topological manifold M,
there is an embedding φ : ∂M × [0, 1] ↪→ M such that φ(p, 0) = p for p ∈ ∂M, im(φ) ⊆closed M,
and φ

(
∂M × [0, 1)

)
⊆open M.

Theorem 144 Let M be an m-dimensional topological manifold and let R, S ⊆closed M be two
m-dimensional submanifolds such that R ∪ S = M and R ∩ S is a component of ∂R as well
as a component of ∂S. Then for any base point x0 ∈ R ∩ S, the inclusion induced maps
π1(R, x0) ∗π1(R∩S,x0) π1(S, x0) → π1(M, x0) is an isomorphism.
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Proof. By Theorem 143, let f : ∂R × [0, 1] ↪→ R and g : ∂S × [0, 1] ↪→ S be two collars. Define

U := R ∪ g
(
[0, 1) × (R ∩ S)

)
, V := S ∪ f

(
[0, 1) × (R ∩ S)

)
.

Now, R ∩ U = R ⊆open R and S ∩ U = g
(
[0, 1) × (R ∩ S)

)
⊆open S as g

(
[0, 1) × (R ∩ S)

)
is open

in M. Since R and S are closed subsets of M with M = R ∪ S, the set U is open in M. Similarly,
V is open in M.

Also, R = R ∩ U ⊆closed U as R is closed in M and g
(
[0, 1) × (R ∩ S)

)
= S ∩ U ⊆closed U as U is

closed in M. Thus by Lemma 142, R is a deformation retract of U. Similarly, S is a deformation
retract of V .

One can also show that R ∩ S is a deformation retract of U ∩ V . Thus the inclusion induced map
π1(R∩S, x0) → π1(U∩V, x0), π1(R, x0) → π1(U, x0), and π1(S, x0) → π1(V, x0) are isomorphisms.
Now, we are done, as Theorem 133 tells that the the inclusion induced maps give an isomorphism
π1(U, x0) ∗π1(U∩V,x0) π1(V, x0) → π1(M, x0).

5.2 Connected sum of two closed smooth manifolds

Theorem 145 (Palais disk theorem) Let M be a closed smooth n-manifold, where n ≥ 2. If
M is orientable, then we pick an orientation for M. Let φ1, φ2 : Bn ↪→ M be two smooth
embeddings (if M is oriented, we demand that either φ1, φ2 both are orientation-preserving or
φ1, φ2 both are orientation-reversing). Then there is smooth homotopy H : M × [0, 1] → M
through diffeomorphisms starting from IdM such that H(−, 1) ◦ φ1 = φ2.

Let M,N be two connected closed smooth n-manifolds, where n ≥ 2. Let φ1, φ2 : Bn ↪→ M and
ψ1, ψ2 : Bn ↪→ N be smooth embeddings. We will write φ1 ≡ φ2 (resp. ψ1 ≡ ψ2) if there is a
diffeomorphism f : M → M homotopic to IdM (resp. g : N → N homotopic to IdN) with fφ1 = φ2

(resp. gψ1 = ψ2). Define two smooth manifolds (smoothness checking is technical!)

M♯(φk,ψk)N :=

(
M \ φk(Bn)

)
⊔
(
N \ ψk(Bn)

)
φk(p) ∼ ψk(p), p ∈ Sn−1 for k = 1, 2.

Remark 146 Suppose φ1 ≡ φ2 and ψ1 ≡ ψ2. Choose diffeomorphisms f : M → M and
g : N → N with fφ1 = φ2 and gψ1 = ψ2. Now, the map M♯(φ1,ψ1)N → M♯(φ2,ψ2)N defined by

x 7−→

{
f (x) if x ∈ M \ φ1(Bn),

g(x) if x ∈ N \ ψ1(Bn).

is a diffeomorphism (checking smoothness of this map is technical!).

Case 1: Both M,N are non-orientable. By Theorem 145, φ1 ≡ φ2 and ψ1 ≡ ψ2. Thus
M♯(φ1,ψ1)N ∼= M♯(φ2,ψ2)N by Remark 146.

Case 2: Next, suppose M is oriented and N is non-orientable. Thus ψ1 ≡ ψ2. Now, we consider
two sub-cases, namely φ1 ≡ φ2 and φ1 ̸≡ φ2.

• If former happens, then M♯(φ1,ψ1)N ∼= M♯(φ2,ψ2)N by Remark 146.
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• For the later, φ1τ ≡ φ2 for any orientation-reversing diffeomorphism τ : Bn → Bn.
Thus M♯(φ1τ,ψ1τ )N ∼= M♯(φ2,ψ2)N by Remark 146 since φ1τ ≡ φ2 and ψ1τ ≡ ψ2. Now,
M♯(φ1τ,ψ1τ )N = M♯(φ1,ψ1)N by definition.

Therefore, M♯(φ1,ψ1)N ∼= M♯(φ2,ψ2)N in any case.

Case 3: If N is oriented and M is non-orientable, the same argument as in Case 2 tells that
M♯(φ1,ψ1)N ∼= M♯(φ2,ψ2)N.

Case 4: Finally, consider both M,N are oriented.

(a) If φ1 ≡ φ2 and ψ1 ≡ ψ2, then we can show that M♯(φ1,ψ1)N ∼= M♯(φ2,ψ2)N by Remark 146.

(b) If φ1 ̸≡ φ2 and ψ1 ̸≡ ψ2, then for any orientation-reversing diffeomorphism τ : Bn → Bn,
we have φ1τ ≡ φ2 and ψ1τ ≡ ψ2, i.e., again using Remark 146, we can show that
M♯(φ1,ψ1)N = M♯(φ1τ,ψ1τ )N ∼= M♯(φ2,ψ2)N

(c) Ifφ1 ̸≡ φ2 butψ1 ≡ ψ2 (orφ1 ≡ φ2 butψ1 ̸≡ ψ2), then M♯(φ1,ψ1)N may not be diffeomorphic
to M♯(φ2,ψ2)N.

(d) If φ1 ≡ φ2 but ψ1 ̸≡ ψ2, then M♯(φ1,ψ1)N may not be diffeomorphic to M♯(φ2,ψ2)N.

Remark 147 Consider the Case 4 above. Note that for two other embeddings Φ : Bn ↪→ M and
Ψ : Bn ↪→ N, either M♯(Φ,Ψ)N ∼= M♯(φ1,ψ1)N or M♯(Φ,Ψ)N ∼= M♯(φ2,ψ2)N.

Remark 148 Consider the Case 4 (c) above. Suppose, θ : M → M is an orientation-reversing
diffeomorphism (for example, M can be any closed orientable surface), then θφ1 ≡ φ2 by
Theorem 145. Choose diffeomorphism f : M → M with f (θφ1) = φ2, i.e., f θ is a diffeomorphism
taking φ1 to φ2, i.e., φ1 ≡ φ2. By Remark 146, M♯(φ1,ψ1)N ∼= M♯(φ2,ψ2)N. Thus if either of M or
N has an orientation-reversing diffeomorphism M♯(φ1,ψ1)N ∼= M♯(φ2,ψ2)N, in any case.

Remark 149 If M,N are orientable, then M♯(φ1,ψ1)N and M♯(φ2,ψ2)N are also so.

Theorem 150 Let M,N be two connected closed smooth n-manifolds, where n ≥ 3. Let
φ : Bn ↪→ M and ψ : Bn ↪→ N be smooth embeddings. Then

π1
(
M♯(φ,ψ)N

) ∼= π1(M) ∗ π1(N).

Proof. Let X := M \φ(Bn) ⊆ M♯(φ,ψ)N and Y := N \ψ(Bn) ⊆ M♯(φ,ψ)N. Thus X∪Y = M♯(φ,ψ)N
and X ∩ Y ∼= Sn−1 is simply-connected. By Theorem 144, the inclusion induced maps π1(X) →
π1
(
M♯(φ,ψ)N

)
andπ1(Y) → π1

(
M♯(φ,ψ)N

)
gives the isomorphismπ1(X)∗π1∗(Y) ∼= π1

(
M♯(φ,ψ)N

)
.

Also, M = X ∪ φ
(
Bn
)

and X ∩ φ
(
Bn
) ∼= Sn−1 is simply-connected. Again by Theorem 144, the

inclusion induced map π1(X) → π1(M) is an isomorphism. Similarly, the inclusion induced map
π1(Y) → π1(N) is an isomorphism. So, we are done.
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5.3 Classification of closed surfaces

Consider the bordered surface obtained from deleting the interior of a closed disk inside the Klein
bottle (resp. torus). In Figure 1, their equivalent planar representations are given.

Fig. 1: One-holed Klein bottle and one-holed torus

Definition 151 Let g be a positive integer. Consider a regular 4g-gon E4g and label each edge
of E4g by the symbols a1, b1, ..., ag, bg (each ai or bj appears twice) so that after orientating each
edge of E4g, the boundary ∂E4g

∼= S1 can be described by the word a1b1a−1
1 b−1

1 · · · agbga−1
g b−1

g .

Now, we identify the (4j + 1)-st edge with the (4j + 3)-rd edge and the (4j + 2)-nd edge with the
(4j + 4)-th edge following the orientations provided. Denote the quotient space by Σg.

Fig. 2: Σ2 is homeomorphic to (S1 × S1)♯(S1 × S1)

Definition 152 Let h ≥ 2 be an integer. Consider a regular 2h-gon E2h and label each edge of
E2h by the symbols a1, ..., ah (each ai appears twice) so that after orientating each edge of E2h, the
boundary ∂E2h

∼= S1 can be described by the word a2
1 · · · a2

h. Now, for any i, we identify two ai-th
edges following the orientation provided. Denote the quotient space by Ng.

Theorem 153 The quotient space N2 is homeomorphic to Klein Bottle.
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Fig. 3: Transformation of Klein Bottle to N2

Proof. See Figure 3.

Theorem 154 Let D be a closed disk embedded in RP2. Then RP2 \ int(D) is homeomorphic to
the Möbius strip.

Proof. Observe that RP2 is obtained from closed unit disk D2 with the identification z ∼
−z, where z ∈ S1. Now, consider Figure 4, where we consider our favorite disk. For a gen-
eral disk, consider Theorem 145.

Fig. 4: The second row shows that RP2 minus a interior of small disk is the Möbius strip

Fig. 5: An alternative presentation of Möbius strip, i.e., one-holed RP2
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Fig. 6: Klein bottle is the double of Möbius strip

Theorem 155 Klein Bottle is homeomorphic to RP2♯RP2.

Proof. The Figure 6 shows that the Klein bottle is the double of the Möbius strip. Now, applying
Theorem 154, we are done.

Theorem 156 (S1 × S1)♯RP2 is homeomorphic to RP2♯RP2♯RP2.

Proof. At first, observe Figure 1 and Figure 5. Now, consider Figure 7 below.

Fig. 7: Transformation of Klein bottle♯RP2 to (S1 × S1)♯RP2
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Theorem 157 [Lee11, Theorem 6.15.] Every nonempty, compact, connected 2-manifold is
homeomorphic to one of the following:

• The sphere S2;

• A connected sum of one or more copies of torus T2 := S1 × S1, i.e., ♯nT2 := T2♯ · · · ♯T2︸ ︷︷ ︸
n-copies of T2

;

• A connected sum one or more copies of the real projective plane, i.e., ♯nRP2 := RP2♯ · · · ♯RP2︸ ︷︷ ︸
n-copies of RP2

.

Remark 158 Let g, h ≥ 2 be integers. Now, planar representations of Σg and Nh tell that
Σg

∼= Σg−1♯T2 and Nh
∼= Nh−1♯RP2. Thus, ♯gT2 ∼= Σg for all g ≥ 1 and ♯hRP2 ∼= Nh for all h ≥ 2.

Theorem 159 Suppose we attach a collection {e2
α}α of 2-cells to a path-connected space X via

maps φα : S1 → X, producing Y := X
∐

φα
B2
α. Let x0 ∈ X and γα be a path from x0 to φα(1) for

each α. Consider the normal subgroup N of π1(X, x0) generated by all [γαφαγα] for varying α.
Then the kernel of the inclusion induced map π1(X, x0) → π1(Y, x0) is N.

Proof. Define a space Z as follows: The space Z is obtained from Y by attaching rectangular
strips Sα := [0, 1]×[0, 1], with the lower edge [0, 1]×0 attached along γα, the right edge 1×[0, 1]
attached along an arc that starts at φα(1) and goes radially into e2

α, and all the left edges 0× [0, 1]
of the different strips identified together. The top edges of the strips are not attached to anything,
allowing us to deformation retract Z onto Y .

In each cell, e2
α, choose a point yα not in the arc along which Sα is attached. Define A := Z\

⋃
α{yα}

and B := Z \ X. Then, A deformation retracts onto X, and B is contractible. Choose a base
point z0 near x0 on the segment where all the strips Sα intersect. Let h be the line segment
connecting z0 to x0 in the intersection of the Sα’s. Consider the base change isomorphism
βh : π1(A, x0) ∋ [ℓ] 7−→

[
hℓh
]
∈ π1(A, z0). In particular, βh sends [γαφαγα] sends to

[
hγαφαγαh

]
.

Let δα be loop in A ∩ B based at z0 such that δα ≃rel z0 hγαφαγαh. Thus, if τα is the top edge of
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Sα and ℓα is non-trivial simple loop in e2
α \ {yα} based at the point τα ∩ e2

α, then δα is homotopic
rel. {z0} to either ταℓατα or ταℓατα

We claim that π1(A ∩ B, z0) is a free group generated by [δα] for varying α. To prove this, cover
A ∩ B by the open sets Aα := (A ∩ B) \

⋃
β ̸=α e2

β . Since Aα deformation retracts onto a circle in
e2
α \ {yα}, we have π1(Aα, z0) ≃ Z.

Now, Theorem 133 to together with (2) of Theorem 132, tells that the kernel of inclusion
induced map is π1(A, z0) → π1(Z, z0) is π1(A ∩ B, z0). Under the base change isomorphisms
βh : π1(A, z0) → π1(A, x0) and βh : π1(Z, z0) → π1(Z, x0), the group π1(A ∩ B, z0) correspondence
to N, i.e., kernel of inclusion induced map is π1(A, x0) → π1(Z, x0) is N. Finally, X (resp. Y)
is a deformation retract of A (resp. Z), i.e., we have the following commutative diagram of the
inclusion-induced maps:

π1(X, x0) π1(Y, y0)

π1(A, x0) π1(Z, x0)

∼= ∼=

Thus the kernel of the inclusion induced map π1(X, x0) → π1(Y, y0) is N.

Theorem 160 Let n ≥ 3 be an integer. Suppose we attach a collection {en
α}α of n-cells to a

path-connected space X via maps φα : S1 → X, producing Y := X
∐

φα
Bn
α. Let x0 ∈ X. Then the

inclusion induced map π1(X, x0) → π1(Y, x0) is an isomorphism.

Proof. In the proof of Theorem 159, now each Aα ≃ Sn−1, a simply connected space, i.e.,
π1(A ∩ B, z0) is a trivial group.

Remark 161 The n-fold dunce cap Dn is the attaching a 2-cell to S1 via S1 ∋ z 7−→ zn ∈ S1. By
Theorem 159, π1(Dn) ∼= ⟨x⟩/⟨xn⟩ ∼= Zn. For n = 2, we have D2

∼= RP2. If n ≥ 3, the space Dn is
not a manifold.

Theorem 162 Let g, h ≥ 1 be integers. By Seifert-Van Kampen theorem

π1(♯gT2) =
〈
a1, b1, · · · , an, bn|a1b1a−1

1 b−1
1 · · · agbga−1

g b−1
g

〉
and

π1(♯hRP2) =
〈
a1, .., ah|a2

1 · · · a2
h

〉
.

Proof. The space ♯gT2 ∼= Σg (resp. ♯hRP2 ∼= Nh) is the obtained from attaching a 2-cell to∨2g
i=1 S1 (resp.

∨h
i=1 S1) via the attaching map S1 →

∨2g
i=1 S1 (resp. S1 →

∨h
i=1 S1) described the

words a1b1a−1
1 b−1

1 · · · agbga−1
g b−1

g (resp. a2
1 · · · a2

g).

Theorem 163 For every group G there is a 2-dimensional CW-complex XG with π1(XG) ∼= G.

Theorem 164 (HNN-Seifert-van Kampen Theorem) Let A,B be two disjoint path-connected
open subsets of a path-connected space X and f : A → B be a homeomorphism. Let α : π1(A) →
π1(X) be the inclusion induced map; and β : π1(A) → π1(X) be the composition of π1(f ) : π1(A) →
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π1(B) and the inclusion induced map π1(B) → π1(X). Let q : X → X(f ) := X
a∼f (a) . Then there

exists an isomorphism

Φ : π1
(
X(f )

)
−→ π1(X) ∗ ⟨t⟩

N
,

where N is the intersection of all normal subgroups of π1(X) ∗ ⟨t⟩ containing {α(g)tβ(g)−1t−1 :
g ∈ π1(A)} such that

Φ ◦ π1(q) : π1(X) −→ π1(X) ∗ ⟨t⟩
N

is the natural group homomorphism, which is injective by Britton’s Lemma.

Corollary 165 Let T be a topological space. We suppose that it can be written as a union
T = Y ∪ Z such that the following conditions are satisfied: (1) Y and Z are open subsets of T ,
(2) Y is path-connected, (3) Z is simply connected, (4) Y ∩ Z consists of two simply connected
path components A and B, each of which is open in T . Then π1(Y) ∗ ⟨t⟩ ∼= π1(T ).

Proof. Let Z′ := Z × 0 and W := Y⊔Z′

b∼b×0 for b∈B and f : A × 0 → A be the obvious map. Now,

π1

(
T ∼=

W
a ∼ f (a × 0)

)
∼= π1(W) ∗ ⟨t⟩ ∼=

(
π1(Y) ∗π1(B) π1(Z′)

)
∗ ⟨t⟩ ∼= π1(Y) ∗ ⟨t⟩.

6 Simplicial complex, triangulation, and simplicial homology

Definition 166 Given a set {a0, ..., an} of points of RN , this set is said to be geometrically
independent if for any (real) scalars ti, the equations

n∑
i=0

ti = 0 and
n∑

i=0

tiai = 0

imply that t0 = t1 = · · · = tn = 0. In other words, {a0, ..., an} is geometrically independent if
and only if the vectors a1 − a0, ..., an − a0 are linearly independent.

Definition 167 Given a geometrically independent set of points {a0, ..., an}, we define the n-plane
P spanned by these points to consist of all points x of RN such that

x =
n∑

i=0

tiai,

for some scalars ti with
∑n

i=0 ti = 1.

Definition 168 Let {a0, ..., an} be a geometrically independent set inRN . We define the n-simplex
a spanned by a0, ., an to be the set of all points x of RN such that

x =
n∑

i=0

tiai where
n∑

i=0

ti = 1

and ti ≥ 0 for all i. The numbers ti are uniquely determined by x; they are called the barycentric
coordinates of the point x of a with respect to a0, ..., an.
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Remark 169 Let σ be the n-simplex spanned by the geometrically independent set {a0, ..., an}.
If x ∈ σ, let {ti(x)} be the barycentric coordinates of x; they are determined uniquely by the
conditions

x =
n∑

i=0

tiai where
n∑

i=0

ti = 1 and ti ≥ 0 for all i.

Now, we have the following observations:

• The barycentric coordinates ti(x) of x with respect to a0, ..., an are continuous functions of
x.

• σ equals the union of all line segments joining a0 to points of the simplex s spanned by
a1, ..., an. Two such line segments intersect only in the point a0.

• σ is a compact, convex set in RN , which equals the intersection of all convex sets in RN

containing a0, ..., an.

• There is one and only one geometrically independent set of points spanning σ.

Definition 170 The points a0, ..., an, that span σ are called the vertices of σ; the number n is
called the dimension of σ.

Any simplex spanned by a subset of a0, ..., an is called a face of σ. In particular, the face of a
spanned by a1, ..., an is called the face opposite a0.

The faces different from σ itself are called the proper faces of σ; their union is called the boundary
of σ and denoted Bd(σ).

The interior of σ is defined by the equation Int(σ) = σ \ Bd(σ); the set Int(σ) is sometimes called
an open simplex.

Remark 171 Now, we have the following observations:

• Bd(σ) consists of all points x of σ such that at least one of the barycentric coordinates ti(x)
is zero. Int(σ) consists of those points of σ for which ti(x) > 0 for all i.

• Given x ∈ σ, there is exactly one face s of σ such that x ∈ Int(s), for s must be the face of
σ spanned by those ai; for which ti(x) is positive.

• Int(σ) is convex and is open in the plane P spanned by {a0, ..., an}; its closure is σ.
Furthermore, Int(σ) equals the union of all open line segments joining a0 to points of Int(s),
where s is the face of σ opposite a0.

Definition 172 A simplicial complex K in RN is a collection of simplices in RN such that:

(1) Every face of a simplex of K is in K.

(2) The intersection of any two simplexes of K is a face of each of them.

In other words, the condition (2) is equivalent to
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(2′) Every pair of distinct simplices of K have disjoint interiors.

Definition 173 If L is a sub-collection of K that contains all faces of its elements, then L is a
simplicial complex in its own right; it is called a sub-complex of K. One sub-complex of K is
the collection of all simplices of K of dimension at most p; it is called the p-skeleton of K and is
denoted K(p). The points of the collection K(0) are called the vertices of K.

Definition 174 Let |K| be the subset of RN that is the union of the simplices of K. Giving each
simplex its natural topology as a subspace of RN , we then topologize |K| by declaring a subset
A of |K| to be closed in |K| if and only if A ∩ σ is closed in σ, for each σ in K. It is easy to
see that this defines a topology on |K|, for this collection of sets is closed under finite unions
and arbitrary intersections. The space |K| is called the underlying space of K, or the polytope of K.

A space that is the polytope of a simplicial complex will be called a polyhedron.

Remark 175 In general, the topology of |K| is finer (larger) than the topology |K| inherits as a
subspace of RN: If A is closed in |K| in the subspace topology, then A = B ∩ |K| for some closed
set B in RN . Then B ∩ σ is closed in σ for each σ, so B ∩ |K| = A is closed in the topology of in
the topology of |K|, by definition.

However, if K is finite, these two topologies are the same. For suppose K is finite and A is closed
in |K|. Then A∩ σ is closed in σ and hence closed in RN . Because A is the union of finitely many
sets A ∩ σ, the set A also is closed in RN .

Remark 176 If L is a sub-complex of K, then |L| is a closed subspace of |K|. In particular, if
σ ∈ K, then σ is a closed subspace of |K|.

Remark 177 A map f : |K| → X is continuous if and only if f |σ is continuous for each σ ∈ K.

An edge containing the blue vertex

Fig. 8: Star and link
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Definition 178 If v is a vertex of K, the star of v in K, denoted by St(v), is the union of the
interiors of those simplices of K that have v as a vertex. Its closure, denoted St(v), is called the
closed star of v in K. It is the union of all simplices of K having v as a vertex and is the polytope
of a sub-complex of K. The set St(v) \ St(v) is called the link of v in K and is denoted Lk(v).
Figure 8 shows the link of three colored vertices.

Theorem 179 Let K and L be complexes, and let f : K(0) → L(0) be a map. Suppose that whenever
the vertices v0, ..., vn of K span a simplex of K, the points f (v0), ..., f (vn) are vertices of a simplex
of L. Then f can be extended to a continuous map g : |K| → |L| such that

x =
n∑

i=0

tivi =⇒ g(x) =
n∑

i=0

tif (vi).

We call g the (linear) simplicial map induced by the vertex map f .

(
2
3 , g
(

2
3

))

Graph of g

Theorem 180 Let

K :=
{

0,
1
3
, 1,
[

0,
1
3

]
,

[
1
3
, 1
]}

and L := {0, 1, [0, 1]}

be simplicial complexes in R. Using Theorem 179, let g : |K| → |L| be a map defined by
g(0) = 0, g

(
1
3

)
= 1, g(1) = 0. Consider the subdivision

K′ :=
{

0,
1
3
,

2
3
, 1,
[

0,
1
3

]
,

[
1
3
,

2
3

]
,

[
1
3
, 1
]}

of K, i.e., each simplex of K′ is contained in a simplex of K and and each simplex of K equals
the union of finitely many simplices of K′. Show that there is no subdivision L′ of L such that
g : |K′| = |K| −→ |L| = |L′| is a simplicial map induced by some vertex map (K′)(0) → (L′)(0).

56



Proof. On the contrary, assume there is a vertex map f : (K′)(0) → (L′)(0) which induces the map
g : |K′| → |L′|. Then in particular, f (0) = 0 = f (1), f

(
1
3

)
= 1 and f

(
2
3

)
= g

(
2
3

)
. Since, g is

induced by f we have

g
(

t · 2
3

)
= g

(
(1 − t) · 0 + t · 2

3

)
= (1 − t) · g(0) + t · g

(
2
3

)
= t · g

(
2
3

)
for 0 ≤ t ≤ 1.

Definition 181 A space is triangulable if there is a simplicial complex whose geometric carrier
is homeomorphic to the space.

Fig. 9: Two different triangulations of torus. On the right side: A vertex-minimal triangulation.

Fig. 10: These are not triangulations of the torus.

Remark 182 In a simplicial complex, the intersection of two simplices is either empty or a single
common face of them. That is, if the intersection of two simplices is a union (possibly disjoint
union) of common faces of them, then the union must be a common face also. See Figure 10.
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Remark 183 Given a list of k vertices, one can tell whether there is no (k − 1)-cell with those
vertices or there is exactly one such (k − 1)-cell and it’s that one.

Remark 184 In order to get a triangulation of a compact surface S , we first split up its planner
representation P , which is a polygon, into finitely many triangles, i.e., we construct a finite
simplicial complex K whose geometric carrier is P . Now, suppose we split up "correctly" the
polygon P . In that case, the restriction of the quotient map q : P → S on each triangle will be an
embedding, and considering images of all elements of K, we get a simplicial complex, denoted
by q(K) so that the surface S is homeomorphic to the geometric carrier of q(K).

Fig. 11: Two different triangulations of Klein Bottle. Right side: A vertex-minimal triangulation.

Fig. 12: A triangulation of Σ2
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Remark 185 Note that if a compact surface S has a triangulation having v vertices, e edges

and t triangles then v ≥ 1
2

(
7 +

√
49 − 24 · χ(S)

)
, e = 3

(
v − χ(S)

)
, and 3t = 2e. Here,

χ(S) is the Euler characteristic, i.e., χ(S) =
2∑

n=0

(−1)n · rank
(
Hn(S)

)
. Recall that χ(S2) = 2,

χ
(
♯gT2) = 2 − 2g, and χ(♯gRP2) = 2 − g.

Fig. 13: A minimal triangulation of Σ2. Note that for any triangulation of Σ2 we have v ≥ 8.4244.
One can show (difficult!) that a triangulation by 9 vertices, 33 edges, and 22 triangles of Σ2 is not
possible.

Definition 186 Let Σ be a simplex. Define two orderings of its vertex set to be equivalent if they
differ from one another by an even permutation. If dim σ > 0, the orderings of the vertices of σ
then fall into two equivalence classes. Each of these classes is called an orientation of σ. If σ is a
0-simplex, then there is only one class and hence only one orientation of σ. An oriented simplex
is a simplex σ together with an orientation of σ.
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A simplicial complex is said to be oriented if each of its simplexes is assigned an orientation.

Definition 187 Let K be an oriented simplicial complex and σp, σp+1 be two simplexes whose
dimensions differ by 1. Define the incidence number, denoted by

[
σp+1, σp

]
, as follows: If σp is

not a face of σp+1, we put
[
σp+1, σp

]
= 0. Suppose σp is a face of σp+1, v is the additional vertex

of σp+1, and v0 < v1 < · · · < vp gives the orientation of σp. Then

[
σp+1, σp] = {+1 if v < v0 < v1 < · · · < vp gives the orientation of σp+1,

−1 if v < v0 < v1 < · · · < vp gives the opposite orientation of σp+1.

Definition 188 Let K be an oriented simplicial complex. Thus, each simplex of K comes with a
fixed orientation. For each integer n, let Cn(K) be the free abelian group generated by all oriented
n-simplices of K, called the group of n-chains of K. Define ∂n : Cn(K) → Cn−1(K) as follows:

∂n(σn) :=
∑

σn−1 is an oriented n-simplex of K

[
σn, σn−1]σn−1.

One can show that ∂n−1 ◦ ∂n = 0 for every integer n. Define

Hn(K;Z) :=
ker ∂n

im (∂n+1)

Theorem 189 [Cro78, Theorem 2.3.] Let K be a simplicial complex with two orientations, and
let K1 and K2 denote the resulting oriented simplicial complexes. Then the homology groups
Hn(K1;Z) and Hn(K2;Z) are isomorphic for each dimension n.

Theorem 190 [Mun84, Theorem 7.1.] Let K be an oriented simplicial complex. Then the group
H0(K;Z) is free abelian. If {vα} is a collection consisting of one vertex from each component of
|K|, then the homology classes of the chains vα form a basis for H0(K;Z).

Definition 191 An n-pseudomanifold is a simplicial complex K with the following properties:

• Each simplex of K is a face of some n-simplex of K.

• Each (n − 1)-simplex is a face of exactly two n-simplexes of K.

• Given a pair σn
1, σ

n
2 of two n-simplexes of K, there is a sequence of n-simplexes beginning

with a σn
1 and ending with σn

2 such that any two successive terms of the sequence have a
common (n − 1)-face.

Definition 192 Let K be an n-pseudomanifold. For each (n − 1)-simplex σn−1 of K, let σn
1 and

σn
2 denote the two n-simplexes of which σn−1 is a face. An orientation for K having the property[

σn
1, σ

n−1] = −
[
σn

2, σ
n−1]

for each (n − 1)-simplex σn−1 of K is a coherent orientation. An n-pseudomanifold is orientable
if it can be assigned a coherent orientation. Otherwise it is non-orientable.
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6.1 Homology Calculation of Klein Bottle

Consider the following triangulation of Klein bottle K. Orient the 1-simplices of K randomly,
keeping in mind the identification on the boundary of the square. Look at the two different
orientations of e13 edges in the square in order to get oriented e13 edge in K. That is, a random
orientation of 1-simplices of the square may not give an orientation of 1-simplices of Klein bottle,
and this is due to identification on the boundary of the square. For example, if e, e′ are edges of
the square giving a single edge in quotient space (Klein bottle), then choosing one orientation for
e, we have exactly one and only one way to orient the other edge e′, so that after identification,
they give an oriented edge in quotient space.

σ1

σ2

σ5

σ6

σ3

σ4

σ13

σ14

σ17

σ18

σ15

σ16

σ7

σ8

σ11

σ12

σ9

σ10

e1

e2

e3

e4

e5

e10

e11

e12

e13

e6

e7

e8

e9

e13

e23

e16

e3

e24

e27

e22

e11

e1

e25

e19

e7

e26

e14

e15
e17

e21
e14

e18
e20

v3v2v1 v1

v3v2v1

v6v5v4 v7

v9v8v7 v4

v1

Fig. 14: Homology calculation of Klein bottle

Now, a priori, not knowing whether Klein bottle is orientable or not, let’s try to orient all triangles
coherently, if possible. In this case, if we choose an orientation for σ1, say clockwise manner,
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then one has to orient σ2 in the clockwise manner due to the edge e23. Similarly, for edge e24,
we need to orient σ3 in the clockwise manner also, and so on. In other words, due to the edges
inside the square, once if we choose an orientation for a triangle, and the coherent orientation of
the other triangles comes automatically. Now, σ1 and σ18 share the edge e13 in the quotient space
with the same incidence number, i.e., it is impossible to give a global coherent orientation of the
triangles of Klein bottle.

Let α :=
18∑
ℓ=1

nℓ · σℓ ∈ C2(K). Now,

∂2(α) =
18∑
ℓ=1

nℓ · ∂2(σℓ)

= n1 ·
(
−e13−e23−e3

)
+n2 ·

(
−e16−e24+e23

)
+n3 ·

(
+e24+e25−e7

)
+n4 ·

(
−e25−e26+e19

)
+n5 ·

(
+ e26 − e11 − e27

)
+n6 ·

(
+ e27 + e1 + e22

)
+n7 · (+e14 + e16 + e15

)
+n8 ·

(
− e15 − e4 + e17

)
+n9 · (−e17−e18−e19

)
+n10 ·

(
+e18−e20−e8

)
+n11 ·

(
+e20−e22+e21

)
+n12 ·

(
−e21+e14+e12

)
+n13 ·

(
+ e1 + e4 − e2

)
+ n14 ·

(
+ e2 − e5 + e3

)
+ n15 ·

(
+ e5 + e8 − e6

)
+ n16 ·

(
+ e6 + e9 + e7

)
+n17 ·

(
− e9 − e12 + e10

)
+ n18 ·

(
− e10 − e13 + e11

)
.

Now, using some basic calculations, one can show that ∂2(α) = 0 if and only if n1 = · · · = n18 = 0.
Also,

(1) ∂2

(
18∑
ℓ=1

σℓ

)
= 2 · (e1 + e14 − e13).

Push-off Trick: Given a 1-chain β, to get a simple looking 1-chain β′ such that β is homologous
to β, we need to push β off 1-simplices that are in the interior of the polygon as many as possible.

Let β(0) =
∑27

ℓ=1 m(0)
ℓ · eℓ ∈ C1(K). We want to push β(0) off e2 using σ13, so consider β(1) :=

β(0) + m(0)
2 ∂2(σ13). Now, if we write β(1) =

∑27
ℓ=1 m(1)

ℓ · eℓ, then m(1)
2 = 0 and β(1) homologous to

β(0). Look at the first two squares Figure 15.

Next, we want to push β(1) off e5 using σ15, so consider β(2) := β(1)−m(1)
15∂2(σ15). Now, if we write

β(2) =
∑27

ℓ=1 m(2)
ℓ · eℓ, then m(2)

5 = 0, m(2)
2 = 0 and β(2) homologous to β(1). So, β(2) is homologous

to β(0). Look at the second and third squares in the picture above.

Continue this fashion. At the end, we have β(16) =
∑27

ℓ=1 m(16)
ℓ · eℓ with m(16)

ℓ = 0 for all ℓ except
ℓ = 1, 3, 7, 11, 13, 14, 17, 20, 24, 26, and β(16) is homologous to β(0).

Therefore,

∂1(β(0)) = ∂1(β(16))

= m(16)
1 (v4 − v1) + m(16)

3 (v1 − v2) + m(16)
7 (v2 − v3) + m(16)

11 (v3 − v1) + m(16)
13 (v7 − v1)

+ m(16)
14 (v7 − v4) + m(16)

17 (v5 − v8) + m(16)
20 (v9 − v6) + m(16)

24 (v2 − v8) + m(16)
26 (v3 − v9)
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Thus using some basic calculations, ∂1(β(0)) = 0 if and only if β(0) is homologous to m · (e1 +

e14 − e13) + n · (e11 + e7 + e3) for some integers m and n.

Next, suppose m · (e1 + e14 − e13) + n · (e11 + e7 + e3) = ∂2(α) for some α ∈ C2(K) and for some
integers m, n. Write α :=

∑18
ℓ=1 nℓ · σℓ. Then any 1-simplex e inside the polygon is a side of

exactly two triangles σi, σj such that [σi, e] = −[σj, e]. Therefore, considering ∂2(α), we can say
that n1 = · · · = n18.

Thus using Equation (1), we can say that m · (e1 + e14 − e13) + n · (e11 + e7 + e3) ∈ im(∂2) if and
only if m is even and n = 0.

Fig. 15: Push-off trick

Finally, consider
0 −→ C2(K) ∂2−→ C1(K) ∂1−→ C0(K) ∂0−→ 0
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Then
H2(K;Z) = ker ∂2 = 0.

Now, the map

H1(K;Z) =
ker ∂1

im ∂2
∋
[
m · (e1 + e14 − e13) + n · (e11 + e7 + e3)

]
7−→

(
[m]2, n

)
∈ Z2 ⊕ Z

is an isomorphism, i.e., H1(K;Z) = Z2 ⊕ Z. Also, H0(K;Z) = Z as K is path-connected.
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