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1 Introductory level problems

Theorem 1 A map f: S" — Y is null-homotopic if and only if it can be extended to D" =
{xe R ||x|| < 1}.

Proof. We first prove the only if part. Letf: S” — Y be null-homotopic, say F: S" x [0,1] = Y
with F(e,0) = f and F(e,1) = c,,, where ¢, is the constant map based at y, € Y. Then,
g: D! — Y defined by

e if0 < ||z < 2.
7) = ,
STV (2 - 2Mell) i<l <t

lll1?

is continuous by pasting lemma and g(z) = F(z,0) = f(2), i.e., g extends f.

Now, we prove the if part. Suppose f: S" — Yisamapand g: D"t! — Y extendsf, i.e., g5, = f.
Define, F: S" x [0,1] — Y as

F(z,1) = g((l — Nz + tzo), where zo € S" is a fixed point.
Notice that F(z, 1) = g(zo) = f(zo) for all z € S". Hence, F : f >~ cy(,). L]

Theorem 2 Let x,y € X. Denote by P(x,y) the set of equivalence classes of paths in X from
x to y under the equivalence relation ‘homotopic relative to {0,1}°. Then there is a one-to-one
correspondence between P(x,y) and P(x, x) if and only if P(x,y) # &.

Proof. Note that P(x, x) is always non-empty (consider the constant loop based atx). So, existence
of a one-to-one correspondence between P(x,y) and P(x, x) implies P(x,y) # <.

Next, let P(x,y) # &, and so choose a path «: [0, 1] — X with a(0) = x and «(1) = y. Now,
define
f:P(x,y) 3 [v] — [y *@] € P(x,x) and

g: P(x,x) 3 [l] — [ x a] € P(x,y).
Now, it is easy to check that f, g are well-defined maps and f o g = Idp v, g o f = Idp( ). L]



Theorem 3 Letp,q: I — X be paths with p(1) = g(0). For0 < s < 1 define h;: I — X by

1 .
hy(t) =47 (2? 1.f0 St<s,
(i) ifs<t<1.

Then, hy >~ {0,1} h% =:p*q.

Proof. Consider H: I x I — X defined by

D ﬁ if0<r<s,Cel01]
(1—0s+ =
H(t, 0) = 2 /¢
t— (1 —0O)s— =
p % ifs <t<1,0€l0,1].
\ 1-— (1 — E)S - E
Notice that H(—,0) = hy and H(—, 1) = p * g, and H(0, —) = p(0), H(1, —) = ¢(1). H

Theorem 4 Letf,g: 1 — X be continuous. Define f: I — X as f(s) := f(1 — s) forall s € I.
Thenf rel {0,1} g if and Only Iff el {0,1} g

Proof. Let H: I x I — X be a homotopy with H(—,0) = f, H(—,1) = g and H(0,1) =
£(0), H(1,t) = f(1) forall t € I. Define H: I x I — X by

H(s,t):= H(1 —s,t) for (s,t) € I x I.

Then, H: f ~i 01y 8 as H(—,0) = f, H(—,1) = g and H0,1) = H(1,1) = f(1), H(1,7) =
H(0,r) = f(0) for all ¢ € 1. The reverse direction is similar. L]

Theorem 5 Let fy,fi: X — Y and g: Y — Z be continuous and A C X. If fy ~4 fi1, then
8 ofO “rela 8 Ofl-

Proof. LetH: X x I — Y be the relative homotopy from fj to f1, i.e., H(—,0) = fy, H(—, 1) = fi
and H(a,t) = fy(a) for (a,t) € A x I. Then the map go H: X X I — Z gives a homotopy from
g o fo to g o f relative to A. 0

Theorem 6 Let fy,fi: X — Y and go,g,1: Y — Z be continuous. If fy ~ f; and gy ~ g, then
8oofo>~giofi

Proof. Let F: X x I — Y be a homotopy from f to fy and G: Y x I — Z be a homotopy from
go to g1. Define 77: X x I — Z by

A (x,1) := G(F(x,0),1) forall (x,) € X x I.
Now for any x € X we have,
%(-xy O) = G(F(X, 0)7()) = G(fo(X),O) =80 OfO(x)a

%(-xa 1) - G(F(x7 1)7 1) = G(fl(x)v 1) = 81 Of]()C).
So, A gyofy >~ g ofi. [



Theorem 7 Let X,Y be topological spaces and let % (X, Y) be the set of continuous functions
from X to Y with the compact-open topology.

o Iff ~ g: X — Y then there is a path from f to g in the space .% (X, Y).

* Suppose that X is compact and Hausdorff; prove that there is a path from f to g in % (X,Y)
ifandonly if f ~ g: X — Y.

Proof. To prove the first part, let H: X x [0, 1] — Y be a homotopy from f to g. Now, consider
p: 10,11 3 t—— H(—,t) € Z#(X,Y). The continuity of p follows from [Mun00, Theorem 46.11
on page 287].

Now, to prove the second part, letp: [0, 1] — % (X, Y)beapathfromf, g. ThenH: Xx[0,1] = Y
defined by H(x, t) := p(t)(x) for all (x,t) € X x [0, 1] is a continuous map as X is locally compact
Hausdorff, see [Mun00, Theorem 46.11 on page 287]. Also, H is a homotopy from f to g. For
the converse part, see the first paragraph. 0

Lemma 8 Let X and Y be two topological spaces, and ~x and ~y be two equivalence relations
onX andY, respectively. Let F: X x [0, 1] — Y be a continuous map such that F(x,t) ~y F(x', 1)
for allt € [0, 1] whenever x ~x x'. Then, F: NLX x [0,1] — NLY defined by ([x], t) — [F(x,1)] is
continuous.

Proof. Note that for quotient map p: X — X/ ~x and ¢: Y — Y/ ~y we have p x Idjo
is quotient map as [0, 1] is locally compact Hausdorff space. Now, consider the commutative
diagram below:

X x [0,1]

pXIdw/ qoF

£ % [0,1] , X

F ~Y

Note that F o (p x Idjo,11) = g o F, so for any U Copen ¥/ ~y we have (g o F)"'(U) is open in
X % [0,1], ie., (p x 1))~ (F~(U)) = (g o F)"X(U) is open in X x [0, 11, hence F~'(U) is
open in NLX x [0, 1]. O

Theorem 9 Mobius strip has a strong deformation retract onto a circle embedded in itself. Thus,
the Mobius strip and cylinder are homotopy equivalent.

Proof. Consider the Mobius strip M = E: %’ l—]y;< f[v_(i’ )13 . Then, there is a deformation retract of
M onto its central circle C := { [x,0] : —1 < x < 1}. To prove this consider, H: M x [0,1] = M

defined by
H: ([x,y],t) — [x,(1 —0y] for —1 <x,y<1,tel



Note that H is continuous by Lemma 8.

Mobius strip has a strong deformation retract onto the central circle.

For the second part, consider the Cylinder S! x [0,1] and H: S' x [0,1] x [0,1] > (z,s,1) —
(Z, 1—1- s) € S! x [0, 1]. Notice that H gives a strong deformation retract of S' x [0, 1] onto
S! x 0. Hence, a Cylinder is homotopy equivalent to a circle. Since being homotopy equivalent
is an equivalence relation in the category of Top, we are done. [

Theorem 10 A space X is contractible if and only if Idy is homotopic to a constant map.

Proof. X is contractible means there are continuous maps f: X — pt and g: pt — X such that
gof ~ Idy and f o g ~ Id,.. Note that g o f is a constant map. Hence, Idy is homotopic to a
constant map.

Conversely, let X be a space such that Idy is homotopic to a constant map, say H: Idy ~ C, where
C.: X — X is the constant map based at x € X. Consider the inclusion map .%: {x} — X. Let
%,: X — {x} be the obvious map. Then ¢, o ., =1d, and H: Idyx ~ C, = S, 0 €. o

Theorem 11 The following two statements are equivalent:

(a) There is a retract r: B*(1) — S 1.

(b) S"!is contractible.

Proof. Suppose we have a retract r: B*(1) — S"~!. Consider a homotopy H: S"! x [ — S"~!
given by
H(iz,0):=r(1—1-z)forzeS" ', tel

Note that H(—,0) = Idg.—1 and H(—, 0) is a constant map. So, (a) = (D).

To prove (b) = (a) suppose S"~! is contractible, so we have a homotopy H: S"~! x I — S"~!
from Idg.-1 to the constant map H(—, 1). Define r: B"(1) — S" ! as

H(l,1) if 0 < |lx|| < 3,
r(x) := . el
H (g2 =20ll) it < el < 1.

[1x1?



Definition 12 Let €' (X) be the set of all connected components of X. If f: X — Y is continuous
then define € (f): €(X) — € (Y) as

% (f)(connected component C of X) := the unique connected component of Y containing f(C).

Remark 13 ForX L> Y& Zitis easy to show that ¢ (1dx) = Id¢x) and €' (gof) = € (g) o € (f).
That is, € : Top — Set is a functor.

Lemma 14 Iff,,f,: X — Y are homotopic, then € (f}) = € (f>).

Proof. Let @ : fi ~ f, be a homotopy, then for any connected component C of X we have
Ji(€) = 2(C x 0) € (C x [0,1]) and /(C) = ©(C x 1) € ©(C x [0,1]).

Now, @ (C x [0, 1]) is contained in a unique connected component of Y. So, both fi(C) and f,(C)
are contained in a unique connected component of Y. [

Lemma 15 Spaces having the same homotopy type have the same number of connected compo-
nents.

Proof. Suppose f: X — Y and g: Y — X be such that f o g ~ Idy and g o f ~ Idyx. Then,
C(f)o€(g) = C(f og) = ¢(dy) = Idy(y), and similarly, €(g) o €(f) = €(go f) = €(Idx) =
Id4x). That is, both €'(f) and ¢'(g) are bijections. l

Theorem 16 Prove that if X is connected and has the same homotopy type as Y, then Y is also
connected.

Proof. This is a particular case of Lemma 15. [

Definition 17 A subset A C X is said to be a weak retract of X if there exists a continuous map
r: X —+Asuchthatroi~1Id: A — A wherei: A — X is the inclusion map.

Theorem 18 There exist spaces A C X such that A is a weak retract of X but not a retract of X.

Proof. Consider the comb space

A:_{G,r) :ogrg1,neN}U(0x[0,1])U([0,1]><0).

Consider the map H: A x [0, 1] — A given by

H«nwﬁy:{@ﬂl—%W) muz
2

<t
(21 = Hx,0)  for § <

1
<1
<1.

Now, notice the following:

* A s contractible as H: Idsy >~ c(,0).

« H((0,0),7) = (0,0) forall 7 € [0, 1], i.e., A is a deformation retract onto {(0,0)}.



Let X := [0, 1]*> and r: X — A be the constant map based at (0, 0). Therefore, roi = c0,0) =~ Idy,
i.e., A is weak retract of X.

Now, we show that A is not a retract of X. On the contrary, let’s assume r: X — A is a retract.
Consider the pointg = (0, 1). Let V := ANB(g; €), where ¢ = 1. Now, r(¢q) = g implies we must
have an open ball B(g; ¢) such that U := X N B(g; ¢) is mapped into V by r. Since U is connected,
r(U) is contained in the set {(0,1)|; < 7 < 2}, the component of V containing g. However, for n
sufficiently large, we have the point p, = (i, %) in U, which is clearly moved by r . So, r cannot

be a retraction. ]

Theorem 19 There exist spaces A C X such that A is a deformation retract of X but not a strong
deformation retract of X.

Proof. Let

4X:{(#0:O§t§LnEN}LﬂOxWJDLﬂWJ]x@,

and A :=0 x [0,1]. Define H: X x [0,1] — X as

(x,(1=30y) ifO<r<l;
H((x,y),1) =3 ((2—30x,0) ifi<r<?2
(0,3r—2)y) if2<r<1.

Then H is a homotopy between Idy and i o r, where i: A — X is the inclusion map and
r: (x,y) — (0, y) is the retraction of X onto A . So, A is a deformation retract of X.

Now, we show A is not a strong deformation retract of X. On the contrary, that there is a homotopy
X % [0,1] — X such that F(p,0) = p,F(p,1) € Aforall p € X, and F(q,t) = q foreveryg € A
and all r € [0, 1]. Let g be a point of A other than the point (0, 0) and let B(g; ) be an open ball
in R?, which does not meet the set [0, 1] x {0} C X. Then, W = X N B(g; ) is a nbd of ¢ in X,
and {¢q} x [0,1] C F~'(W). By the Tube Lemma [Mun00, Lemma 26.8.], there is an open nbd
U of g in X such that U x [0,1] C F~'(W). So, for each p € U, F({p} x [0, 1]) is contained in
the component of W containing p, and this component is the intersection of B(g; ) with the tooth
containing p. This contradicts the fact that F(p, 1) € A for every p € X, and hence our claim. []

Definition 20 A subset A C X is said to be a weak deformation retract of X if the inclusion map
i: A — X is a homotopy equivalence.

Theorem 21 There exist spaces A C X such that A is a deformation retract of X but not a strong
deformation retract of X.

Proof. Consider the proof of Theorem 18. The inclusion map of the comb space into the unit
square is a homotopy equivalence, as both spaces are contractible. But there is no retraction of
the unit square onto the comb space. [

Theorem 22 Let@ #A C X, Y # &. ThenA x Y is aretract of X x Y if and only if A is retract
of X.



Proof. Ifr: X — Aisaretractthenr x Idy: X X ¥ — A x Y is a retraction. Conversely, for any
retraction R: X X ¥ — A x Y and any y, € Y the map r: X — A defined by

r(x) := mx o R(x, yp) forx € X

is retraction of X onto A. L]

Theorem 23 LetA C B C C. IfA is aretract of B, and B is a retract of C, then A is a retract of
C.

Proof. Letr,: B— A and r,: C — B be retractions. Then r; o r,: C — A is a retraction of C
onto A. ]

Theorem 24 Let x, € R?. Then there exists a circle C, which is a strong deformation retract of

R*\ {xo}.

Proof. LetC:={z€ R?:|z— x| = 1}. Define H: R\ {xo} x [0,1] — R?\ {x0} as

Z—X

Hizt)=0—-0z+¢t ( 0 —i—xo) for all (z,1) € R*\ {xo} x [0, 1].

|Z—x0|
]

Lemma 25 Define D" := {z € R" : ||z|| < 1}. Let x,y € int(D"). Then, there is a homeomor-
phism ¢: D" — D" such that p(w) = w for ||w|| = 1 and p(x) = y.

Proof. Consider the homeomorphism v : int(D") — R”" given by

<

YOS T

Let T: R* — R” be the translation given by T7(z) = z — ¥(x) + ¥(y). Now, we show that
=1 o T o int(D") — int(D") can be extended to a homeomorphism D" — D"

Note that for ||z]| < 1, write z = rv for some v € S"~! and some r € [0, ). Then, ¥(z) = =V
and for any R € [0, 00) and any w € S"~! we have ¢~'(Rw) = {fzw. So, for any r € [0, 1) and
any v € S"~! we have

oo Towimy = T ZPOHVON [l = =0y + (= w0l
L[5y =@+ o] A=n 1w =0 =+ 1 =)
Therefore extension is possible. 0

Theorem 26 Every connected manifold is homogeneous, i.e., for a connected manifold M and
any two points a,b € M, there is a homeomorphism ®: M — M such that ®(a) = b.



Proof. To prove this, consider the non-empty set
S = {x € M| there is a homeomorphism f: M — M with f(x) = b}.

Now, consider y € § with a homeomorphism g: M — M such that g(y) = b. Let¢): U ( Celosed
M ) — D" be a homeomorphism with y € int(U). Now, for any x € int(U), choose ¢: D" — D"
such that ¢ (¢(x)) = ¥(y) and p(w) = w for ||w|| = 1. So, define a homeomorphism f: M — M
as

f(2) = g<¢_1 opo 1/1(2)) if z € int(U),
s if z € M\ int(U).

In other words, int(U) C S. That is, S is open in M. Similarly, prove that M \ S is open. Now, M
is connected to imply the result. [

Theorem 27 Every connected manifold is 2-homogeneous, i.e., given {a;,a,} U {by,b,} C M,
we have a homeomorphism v¢): M — M such that {)(a;) = by for eachk = 1,2.

Proof. Let
T = {(x1,x2) € M x M| there is a homeomorphism f: M — M with f(x;) = by,f(x2) = b, }.

Now, consider (y;,y,) € T with a homeomorphism g: M — M such that g(y,) = b, g(y») = b,.
Let : Uk( Celosed M) — D" be a homeomorphism with y, € int(U;) for k = 1,2 with
U, NU, = &. Now, for any x; € int(Uy), choose ;: D" — D" such that ¢ (Vr(xr)) = Yi(yr)
and ¢, (w) = w for ||w|| = 1 where k = 1,2. So, define a homeomorphism f: M — M as

g(Yr' opio(2)) ifz € in(U)),
f@) = g(¥;' oprothn(z) ifz € in(Uy),
8(2) ifze M\ (int(Uy) Uint(U5)).

In other words, int(U;) x int(U,) C T. That is, T is open in M x M. Similarly, (M X M) \ T is
open. Now, M x M is connected implies the result. U

Remark 28 Similarly, one can show that every connected manifold is k-homogeneous for each
integer k > 1.

Theorem 29 Torus minus a point is homotopy equivalent to figure eight.

Proof. Note that Torus is the quotient space T := =T N[zllj t% ]a1>1< d[(; 71’_11]) =G and figure-

eight is the space S' VS' :=S! x {1} U{1} x S'. Letq: [—1, 1] x [-1, 1] — T be the quotient
map.

Note that for any two points a, b € T we have a homeomorphism ¢: T — T with p(a) = b, see
Theorem 26. In other words, T \ {a} = T\ {b}. So, without loss of generality, we may remove
the point g(0, 0) from the Torus to solve this problem.



Now, note that there is a strong deformationretract H: ([—1, 11*\{(0,0)}) xI — [—1,1]*\{(0, 0)}
of [—1,1]*\ {(0,0)} onto its boundary O[—1, 1]* considering the radial projections starting from
the origin. That is

Heyt) = [ —— 41— 1) () for (x,y) € [—1, 11\ {(0,0)} and 7 € T.
max(|x], |y])

Now, the map
(T\ {9(0,00}) x 1> (qtx.y),1) —> goHx,y,)) € T
is a strong deformation retract of T \ {¢(0,0)} onto ¢(d[—1,11*) = S' v S". O

Theorem 30 S" is a strong deformation retract of R"*! \ {0}.

Proof. Consider (R"“ \ {0}) x [0,1]1 3 (z,t) — (1 — )z + té e R 1\ {0}. O

Theorem 31 Let X := {x,y} be the two-point Sierpinski space where the only open sets are
X, @, {x}. Then, there is a strong deformation retract of X onto {x}.

Proof. Consider the map H: X x [0, 1] — X defined by

H ) z ift=0,
zZ,1) ==
x ifr>0.

Now, H~' ({x}) = {(x,0)} UX x (0,1] = ({x} x [0, 1T) U ({y} x (0, 1]), which is an open subset
of X x [0, 1], as it’s complement in X x [0, 1]is {y} x {0} Ciiosea X X [0, 1].

This shows that H is continuous. Also, since H(—,0) = Idy and H(—, 1) = ¢, for all z € X, then
this shows that H : Idy ~ c,. L]

Theorem 32 If X is Hausdortf, andr: X — A, then A is closed in X.

Proof. If there were x € A \ A, then because x # r(x), and X is Hausdorff, there would exist
disjoint nbds U D {x}, and V D {(r(x)} such that r(U) C V; however since x € A, there must be
a € Ain U, and since a = r(a) € V, this contradicts the disjointness of U and V. ]

Remark 33 If X is not Hausdortf, then Theorem 32 may not be true; for example, consider
Theorem 31.

Theorem 34 LetY be a subspace of R" and letf,g: X — Y be two continuous maps. Prove that

if for each x € X, f(x) and g(x) can be joined by a straight-line segment in Y, then f ~ g. Deduce
that any two maps f, g: X — R" must be homotopic.

Proof. Consider X x [0,1] > (x, 1) — tf(x) + (1 — )g(x) € Y. ]

Theorem 35 LetY be contractible; then any f, g: X — Y are homotopic.



Proof. Let H: Idy ~ c,,. Then consider,

Gt H(f(x), 2f) if 0
T H(g),2t— 1) if

IA N
IA N
=R

O]

Theorem 36 Let X be any space and let f,g: X — S" be two continuous maps such that
f(x) # —g(x) for all x € S". Then f is homotopic to g.

Proof. Consider

(-0 +150) _ o,

X x [0,1]> (x, 1) — Tl €5

Theorem 37 Any rotation on S" is homotopic to the identity map of S".

Proof. LetA € SO(n + 1), then there is a invertible matrix P such that PAP~! has the form (%)
cosf) sind

—sinfé cosf

if n is even, and 0 elsewhere. Replacing 6 by 16 gives a homotopy H : Id¢,: 1)xmr1) = PAP™!. So,

the required homotopy is P~'HP. Antipodal map on S"” homotopic to identity map if nis odd. [J

many 2 x 2 matrices of the form ( ) along the diagonal, 1 in the last diagonal place

Theorem 38 There is a deformation retract of GL(n, R) onto O(n).

Proof. Here we show there is a deformation retract of GL(2, R) onto O(2). Let A := [A; : A,] €
GL(2,R). Let O := [0, : O,] be the orthogonal matrix obtained from A by the Gram-Schmidt

process. That is
(A2,A1)

0, = A 0, = A2~ e .
A o]

That is we can write O; = A\;A; and O, = M\ 1A + A\»nA, with A\ > 0 for k = 1, 2. So, consider
the homotopy, H: GL(2,R) x [0, 1] — GL(2, R) given by

HA, 1) = [(tAn + 1 = DA| @ 1AA; + (1A + 1 — DA,).
O

Theorem 39 Letn > m be positive integers. WriteS" = {(z, w) € R" ™! xR"™ : |z]>+|w|* = 1}
and let 8" := {(z,w) € §" : |w| = 0}. Then S"\S" = R"*+! x §"—"~1,

Proof. Consider
P - Sn\sm 3 (Z, W) — (i’ K) c Rm-H % Sn—m—l
w|” |wl

with it’s inverse

U R S S (g, b) — a : b € S"\S™.
V0al? + 1> \/lal? + |bP

10



Theorem 40 Letn > m be positive integers. Let V be an m-dimensional vector subspace of R”",
and W be it’s complimentary subspace, i.e., R" =V & W. Then, R"\V 2V x (W\0).

Proof. Consider the homeomorphism

O:RN\VSv®w—s (v,w) €V x (W\0).

2 Problems related to fundamental groups

Theorem 41 Let (X,,x.)aca be a collection of pointed topological spaces. Then

™ (H Xa, {xa}a€A> = H T1(Xa, Xa)-

acA acA

Proof. For 3 € A,letps: [],c4Xa — Xgbetheprojection. Define ®: 7 ([T, 4 Xa, {*ataca) —
[Loca mXa,xs) as
O([f1) = {[Pa oSV} peus

for any loop f: I — [[,c4 X« based at the point {x,}ac4. Now, for any two loops f,g: I —
[I,c.4 X based at the point {x,}nc4 We have

O([f1-1g]) = ([f x &1) = {[Pao(F* Q)] }uca
= {[(pa o f)* (pa © g)]}aeA = {lpa of1Ipa Og]}aEA - (I)([f]) : (I)<[g])

So, ® is a group homomorphism.

Now, (ID([f]) = {[pa © f1},c4 is trivial element implies for each @ € A we have a path-
homotopy H,: I x I — X, from the loop p, o f to the constant loop ¢, based at x,. Define
HoI xI — [[,caXa as H = [],c4Ha. Then H defines a path-homotopy from the loop
f =1l,caPaof tothe constantloop [], . 4 cx, based at {x,}aca. So, ® is a monomorphism.

Let f, be a loop in X, based at x,, for each a € A. Consider the loop f =[], c 4/ in [, c 4 Xa
based at {x, }ac4- Then, @(U]) = {lfal} e, i€, @ is epimorphism. O

Theorem 42 Let C be a circle and x,y € C be two distinct points. Let fy, fi: [0, 1] — C be the
paths defined by two distinct arcs of C starting at x and ending aty. Then f, is not homotopic to
fi relative to {x, y}.

Proof. On the contrary, let’s assume fy ~i (1,3 fi- Then fy « fi 1 fi * fi by [Kos80, Lemma
14.2] and fi * fi el (x} € by [Kos80, Lemma 14.4], where ¢, is the constant loop based at x.
Thus, fy * f; is a loop that traverses the circle once and is homotopic to the ¢, relative to {x}, which
is impossible by [Kos80, Theorem 16.7.] (actually fo * fi is a generator of 7,(C, x) = Z). [l
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Theorem 43 Prove that the subset S' x {xy} is a retract of S' x S', but that it is not a strong
deformation retract of S' x S! for any point x, € S!. Is it a deformation retract? Is it a weak
deformation retract?

Proof. Consider the retract
r:S'x S'3 (z,w) — (z,x0) €S' x {x0}.

Torus and circle are not homotopy equivalent as 7(S! x S') & Z x Z and 7(S') = Z. Hence,
a circle can’t be a weak retract of torus. In particular, a circle can not be (strong) deformation
retract of a torus.

Here is an alternative way of showing that the circle S' X {x,} is not deformation retract of S! x S!
forany xy € S'. Onthe contrary, letr: S'xS! — S'x{xy} bearetractionand H: S'xS'x[0, 1] —
S' x S! be a homotopy such thatior ~ Idgi 1, where i: S' x {xy} < S! x S! is the inclusion. Let
j: {xo} x S' < S! x S! be the inclusion map and p,: S' x S! 5 (z, w) — (x0, w) € {xo} x SL.
Now, ior ~Idgiyst = proioroj~p,oldsiys 0j = p,oj. But, p, oiisaconstant map and
p» o is the identity map of {xo} x S!. Thus, identity map of {xo} x S! is null-homotopic, i.e.,
Idgi is also null-homotopic. By Theorem 1, we have a retraction D> — S!, which is impossible,
see [Cha03, Theorem 1] for a purely point set topological proof of no retraction theorem. [

Theorem 44 Let X be a path-connected space having an abelian fundamental group. Let
x1,X € X. Now, for any two paths o, 3 from x| to x, we have ay = [y : (X, x1) = (X, x2).

Proof. To prove this, let [f] € m(X, x;) then,
ax([f) = [@xfra] = [@xfxBxBxa] =[axfxp][Bx*a]

= [Bra|[axf«p] = [BraxaxfxpB] = [Bxf*B] =B
[

Theorem 45 Let X be a path-connected space. Suppose for any two points x;,x, € X and any
two paths o, 3 in X from x; to x, we have oy = [s. Then, the fundamental group of X is abelian.

Proof. Let [f] € m(X,x;) and « be a path from x; to x,. Define § := f * a. Now, for any
[g] € m (X, x;) we have ﬁ#([g]) = a#([g]) from the hypothesis. In other words,

Be(lgl) = [Brg*B] = [fraxgxrfxa] = [@xfxgxfxa]issame as ay([g]) = [@xg*a].

= [f1I7(8lf1 = [fxg*f] =a([@xfrg«fxa]) =am([axgxa]) =Igl
]

Theorem 46 All paths with the same endpoints are homotopic in a simply connected space X.

Proof. Let «, 3 be two paths starting at x € X and end at y € X. Then,

O pe1 {0,1} O % Cy el {0,1} Ok (B * 3) el 0,1y (a B) * 0 Zrel {0,1} Cx * B el {0,1} B.

So, we are done. L]
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Definition 47 A pointed space (X, xo) is called an H-space if there isamapm: X x X — X with
m(xy, Xo) = Xxo such that we have two homotopies

% : m(xO; _) Zrel xg IdX and% : m(_axO) Zrel xg IdX

Theorem 48 The fundamental group of an H-space (X, x,) is abelian.

Proof. Let «, 3 be any two loops based at xy and c,, be the constant loop based at x,. Here,
m(a, 3) is a loop based at x, defined as m(«, 5)(s) = m(a(s), B(s)) for 0 < s < 1. Similarly,
m(xg, 3) is a loop in X based at x, defined as m(xo, 5)(s) :== m(xo, 3(s)) forall 0 < s < 1.

Notice that 8 >~ ,, m(xg, 3). To prove this consider
F 10,11 x [0,1] 3 (s, 1) — JA(B(s),1 — 1) € X.

Then #(—,0) = A (5(—),1) = (=) and F(~, 1) = H(B(-).0) = m(x, 5(-)). Thus
T ﬁ rel xy m(x07ﬁ)-

Similarly, o >~ , m(cv, Xo).

Now, if 4,1 ¢y, * @ o1y, @ and G 5 % Cyy rel y, [, then
[07 1] X [07 11> (S7 t) — m(goc(sy t)v gﬁ(sy t)) €X

is a homotopy relative to {xo} from m(c,, * c, B * ¢y,) to m(«, f3).

Thus
ﬁ * QY el x m(x07 ﬁ) * m(Oé,Xo) = m(cxo *Q, B * Cxo) rel xg m(a, 5)
Similarly,
m(a, B) rel xo m(a * Cxyy Cxp * 6) - m(a,xo) * m(x07 6) Xrelxy O X B
So, we are done. O]

Lemma 49 [Eckmann-Hilton Argument] Let X be a set with two binary operations, which we
will write o and ®, and suppose

1. there are elements 1,,1y € X such that l,0ca = a =aol,and g ®a =a = a® lg
foralla € X.
2.(a®b)o(c®d)=(aoc)® (bod)foralla,b,c,d € X.

Then o and ® are the same and, in fact, commutative and associative.

Proof. First, observe that the units of the two operations coincide: 1, = 1,01, = (1g ® 1,) o
(lo®le)=(lgol)@(loolg) =1y @ lg = lg.

Now, leta,b € X. Then,aob = (1®a)o(b® 1) =(lob)®(acl)=bRa=(bol)®(loa)=
(b ®1)o (1 ®a) = boa. This establishes that the two operations coincide and are commutative.
Now, For associativity, leta,b,c € X. Then (a®@b)®c = (aRb)R(1®c) = @R 1) R b XRc) =
a® (b® c). So, we are done. L]
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Theorem 50 Let (G, *) be a topological group with identity element e. Then, (G, e) is abelian.

Proof. To prove this, we apply the Eckmann-Hilton argument on the set [(I ,0D), (G, e)] of all
relative-homotopy classes of loops based at e with two binary operations. So, for two loops «, 3
of G based at e consider two operations o and ® defined as follows:

a(21) if0 <t

<
BRr—1) ifl<s

|/\ VAN
—_ ol

(o B) (1) == a(t)yep(1) for 1 € [0, 1] and (o ® B) (1) := {

Now, these operations induce two operations on [(I , oI, (G, e)}. Note that the second operation
gives the fundamental group based at e. [

Theorem 51 Give an example of an injective (surjective) continuous map p: X — Y for which
. 1s not injective (surjective).

Proof. Consider S' < D and [0, 1] 2 1 — &> ¢ S'. O

Theorem 52 [Hat02, Exercise 13 Chapter 1.1] Given a space X, a path connected subspace A
and ay € A, show that the map i,: (A, ay) — m (X, ap) induced by the inclusioni: A — X is
surjective if and only if every path in X with end points in A is homotopic to a path in A.

Proof. Suppose, the inclusion induced map i,.: (A, ag) — (X, ap) is surjective and ov: I — X
be a path with a(0),a(l) € A. Since, A is path-connected we have a path 5: I — A from
a(1) to a(0). Therefore, a * (3 is a loop in X based at «(0). Since, m(A,ap) = 7 (A, a(O))
and m(X,a0) = m (X, (0)), the inclusion induced map (A, a(0)) — (X, a(0)) is also
surjective. So, there is a loop v: I — A based at «(0) such that v ~ (01} o * 3, this implies
7*6 Zrel {0,1} O [

Theorem 53 [Hat02, Exercise 7 Chapter 1.1] Let f: S' x [0, 1] 5 (€*™,5) — (€*™T9) 5) €
S! x [0, 1]. Thenf is homotopic to the identity by a homotopy that is stationary on one boundary
circle but not by any homotopy that is stationary on both boundary circles.

Proof. For the first part, consider
H:S'x[0,1] x [0, 1] — S' x [0, 1] given by (e*™, 5, 1) — (2™ s) forall § € R,

Suppose there is a homotopy F: S' x [0, 1] x [0, 1] — S' x [0, 1] such that F(—, —, 0) = Idgi (o
and F(—, —, 1) = f with

F(e¥™,0,1) = (¢™,0) and F(e*™,1,1) = (€™, 1) forall § € R, and for all # € [0, 1],
Consider a: [0,1] — S!' x [0, 1] be given by a(s) :== (1,s) for 0 < s < 1. Let IT: S! x [0,1] >
(z,5) — z € S! be the projection map.

Now, Hoa = 1, and Il o f o a(s) = Il o f(l,s) = II(e*™,s) = & for 0 < s < 1,
ie., [Tofoa:[0,1] — S' be a generator of the fundamental group of S'. But, we have a
homotopy G: [0, 11> — S' given by G(s,?) := Il o F(a(s),) such that G : 1 ~ (o1} Il of 0 v,
contradiction. 0
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Theorem 54 Let % = {V;:i € A} be an open covering of X by simply-connected open subsets
V; of X. Suppose, (\;ca Vi # @ and for each i, j € A the space V; N V; is path-connected. Then, X
is simply connected.

Proof. Since X is path-connected, it is enough to show that (X, xy) = 0 for some x, € ﬂie A Vi
For aloop «: ([O, 1], {0, 1}) — (X, xo), considering the cover {a~!(V;) : i € A} of [0, 1], we have
a partition 0 =y < ... < t, = 1 of [0, 1] such that a([tj,tj+1]) CVieforj=0,..,(n—1).
Define oy(s) := a((1 — $)t; + st;41) for 0 < s < landj =0, ...,(n — 1). Then,

O X ok kQpoxccsk Qg
rel xo

~ 040*(31*51)*Oél*(Bz*ﬁz)*042*"'*(5,1_1*5,1—1)*0411—1

rel xo

~ (ag* B)) x (Br % a1 % By)  (Bak g % Bs) 5+ (Buca % Qua % B, y) % (Buey * i)

rel xq

Vi

Qp—1 VO

Xo

Here, 3;: [0,1] — V, N V] is a path from xy to ap(1) = a(t;) = a;(0), hence o * Bl is a loop
based at xj in the simply-connected space V.

B2: [0, 1] — VNV, is a path from xg to (1) = a(fz) = a;(0), hence F; * oy *Bz is a loop based
at xy in the simply-connected space V.

Bs5: 10,1] — V,N Vs is a path from xy to (1) = a(t3) = a3(0), hence 5, * an *33 is a loop based
at xo in the simply-connected space V.

a—1: [0, 1] = V,_1 NV, is a path from x; to o,_»(1) = a(t,,—1) = ,—1(0), hence (3, * o, is
a loop based at x in the simply-connected space V,,_;. Therefore,
o 2 (g # By) = (Brxar s By) # (Brk o s Ba) ook (Buoa e ua 4 B, y) # (Bt # )
rel xo

= Cyy K Cxy X Cp 702 Oy * Cxy = Cxp
rel xo
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Definition 55 For a topological space X, the cone CX is defined as

X x[0,1]
 (x,0) ~ (x,0)

Theorem 56 For a topological space X, the cone CX is contractible.
Proof. Consider H: CX x [0,1] > ([x, t],s) — [x,#(1 — s5)] € CX. O

Theorem 57 The cone CS" is homeomorphic to D" !,

Proof. Consider the surjective map g: S" x [0,1] 3 (x,1) — tx € D", it sends S" x 0 to
0 € D", So, we have a continuous bijective map f: CS" — D", Since, CS" is compact and
D™t is Hausdorff, f is a homeomorphism. ]

Theorem 58 A map f: X — Y is null-homotopic if and only if it can be extended to a map
fiCX =Y.

Proof. To prove only if direction, let H: f ~ ¢, for some y € Y. Then consider

X><[01

Xx]0, 1&

= D~ D)

Now, to prove if direction notice that the composition i: X > x — [x, 1] € CX and]N‘: CX—Y
is f, and CX is contractible. O]

Definition 59 The suspension X of a space X is defined as

X x [0, 1]

X = .
(X, O) ~ (xla 0) and (ya 1) ~ (yla 1)

Theorem 60 YS" = S*+!,

Proof. Consider the map g: S" x [0,1] — S"*! defined by g(x,?) := (xsinnt, cos 7t) to show
¥S" is homeomorphic to S"*!. O

Remark 61 IfX is path-connected, then by Theorem 54, >.X is simply connected as the cone over
any space is contractible. In particular, S",n > 2 is simply-connected. Note that S' = ${4-1} is
not simply-connected.

Theorem 62 [Hat02, Exercise 2 Chapter 1.2] Let X be the union of convex open sets X, ..., X,
such that X; N X; N Xy # @ for all i,j, k. Then, X is simply connected.

Proof. For n = 2, consider the Theorem 54. Now, note that for every 1 < m < n — 1, the space

(X1 U...UX,) N Xpg1 = X1 N Xppy1) U ... U (X, N X,11) I8 path connected. So, we are done by
induction. U]
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Theorem 63 [Leell, Theorem 7.21.] The fundamental group of a topological manifold M is at
most countable.

Proof. Consider a cover % of M by countable many open sets, each of which is homeomorphic
to R”. Now, the intersection of any two such open sets has at most countably many components,
so picking up a point from each component of each intersection, we have an at most countable set
% Next, for any such open set U € % and x,x’ € € N U, consider a path 4, in U from x to x'.
Fix, p € €. There are at most countably many loops based at p which are finite concatenation of
paths of the form 1.

Next, let a be any loop based at p. By Lebesgue Number Lemma we have a partition 0 = ¢, <
fh <<t <t, = 10f[0, 1] such that each oy := «|[t;_1, #;] has image contained in one of
the element Uy of % .

Uy

Find a point x; € % such that a(#;) and x; lie in same component of U, N U, and choose a path
fi from x; to a(t;). We also take, x, = p for k = 0,n and f; to be constant path based at x; for
k = 0,n. Now,

O el p QLR Q¥ K Q1 %Oy el p (ﬁ)*al*fl)*(fl*az*fz)*...* n,z*an,l*fn_l)*(fn,l*ozn*fn)
ety RO x B2k ok hYt o xhUnas each Uy is simply-connected.

X0,X1 X1,X2 Xn—2,Xn—1 Xn—1,Xn

So, we are done.

Theorem 64 Consider the action of Z on R™\0 given by n - x := 2"x. Then, (R™\0) / 7 =
S™1 x Sl

Proof. Define f: (R™\0)/Z — S"~' x S by

X

[x] —> ( ,exp (27ilog, ]x|)>

x|
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with inverse g: S"~! x S' — (R™\0)/Z given by

[27] ifo<r<l,

2mity o
8z, €)= {[z] ifr=1.

]

Corollary 65 If m > 3, then R™\0 is simply-connected, hence homeomorphic to the universal
cover of S"~! x S'.

Definition 66 Let X be a space. Two maps fy,f;: S! — X are said to be freely homotopic if
there is a map H: S' x [0,1] — X such that H(—,0) = f, and H(—, 1) = f;. Note that being
freely homotopic is an equivalence relation on the set of all maps from S' to X. The set of all
equivalence classes will be denoted by [S!, X].

Lemma 67 Let X be a path-connected space and xo € X. Consider a map o: S' — X. Then
there is amap f3: (S', 1) — (X, xo) such that o, 3 are freely homotopic.

Proof. Consider apathf: [0,1] — X with f(0) = xo and f(1) = a(1). Define H: S' x[0,1] — X
as follows:

f(t+3s) if0<s <,
3 1 —1t
(™ 1) = aoexp<27ri-1+2t S—T>) if%§s§%7
2+t
f(1—3<s—T+)) 2 <5<
Notice that H is well-defined continuous map. Note that as defined, ¢*™ = 1 if and only if
s = 0, 1. Now, define 3 := H(—,0). Also, H(—, 1) = «. So, we are done. [

Lemma 68 Let X be a space and xy € X. Suppose [5] =[] - [a] - [v]7! in 7(X, x9). Then o, 3
are freely homotopic.

Proof. Define H: S! x [0,1] — X as follows:
v o exp (2mi - (1 + 35)) if0<s<
.3 1—1 g

2
woexp(Zm'- (1—3(S—T+t>)) if%tgsgl.

Notice that H is well-defined continuous map. Note that as defined, ™ = 1 if and only if
s =0,1. Now, § = H(—,0) and H(—, 1) = a. So, we are done. O

Lemma 69 Let X be a space and x,. Suppose «, 3: (S',1) — (X, xo) are two freely homotopic
maps. Then, there is map v: (S', 1) — (X, xo) such that

(81 =[] [al - [7]7" in 71(X, xo).
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Proof. Consider a free homotopy H: S' x [0,1] — X from 8 = H(—,0) and o = H(—, 1).
Notice that H(1,0) = S(1) = xo = a(1) = H(1, 1). Define amap v: (S', 1) — (X, xo) as

(¥ = H(1,1) for0 < s < 1.
Now, consider the map H: S' x [0, 1] — X defined by

H(, 3s) if

) 3s —t
2mis . ;. :
HEeT™, )= H <exp (2m 3 Zt) ,t) i

3
H(1,3 — 3s) if 3 <s <

o
IA
o2

IN

t
9
3—t
3

—

<s

IN

I3
3 )

1.

Notice that # is a well-defined continuous map with H(—,0) = S and H(—, 1) = v % a* 7 such
that (1, 1) = x, for all z € [0, 1]. O

Theorem 70 [Hat02, Exercise 6 Chapter 1.1] Let X be a path-connected space and x, € X.
Define conjugacy equivalence relation on (X, x¢) as follows: Two elements o, 5 € m(X, x¢) are
said to be equivalent if and only if there is an element v € (X, x) such that o« = vBy~'. We
will denote this conjugacy equivalence relation by ~. Then there is a bijection

X, X
71-1(70)_>

Y

[S', X]

Proof. Define ®: m(X, x0) — [S!, X] as

@([f]) = cls(f) for [f] € m (X, xo).

That is, for a map f: (S!, 1) — (X, xo) we are sending the loop-homotopy class [f] € 7(X, xo) of
f to the free-homotopy class of f, i.e., we are ignoring the base-points to define ®. Clearly, ® is
well-defined.

X
7T1( ,XO) N

~Y

[S', X]. Finally, Lemma 69 gives that this induced map is an injection. 0

Now, Lemma 67 says that ® is surjective. Also, Lemma 68 says that ¢ induces a map

Theorem 71 Let C* := C\ {0}. Consider the homeomorphism ¢: C* > z — —z € C*. Then
the orbit space C* /{p,1d} = {z € C : Re(z) > 0}.

Proof. Consider the map f: C*/{¢,1d} — {z € C: Re(z) > 0} defined by

if R >0
f(lz]) = {Z if Re(z) = 0,

—7 otherwise.

with inverse
g:{z€ C:Re(z) >0} 32+ [z] € C*/{p,1d}

]

Theorem 72 Let C* := C\ {0}. Consider the homeomorphism ¢: C* 5 z — 2z € C*. Then
the orbit space C* /(i) is Klein bottle.
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Proof. Notice that C* 3 z — (é, |z|> € S! x (0, co0) is a homeomorphism, and ¢ is equivalent
to ®: S' x (0,00) 3 (e, r) — (e7,2r) € S! x (0, 00). Now,

C* _S'x(0,00) , S'x[1,2]
(o) (@) @D~E2

is the Klein bottle. O

3 Problems related to covering spaces

Theorem 73 The exponential map exp: C — C \ {0} is a covering map.

Proof. Consider the homeomorphism : R?\{0} > (rcos @, rsinf) — (e, e?) € (0,00) x S'.
Now, the covering map is the following composition

homeomorphism X covering map

C=R?’> (x,y) > (e, ev) £> exp(x + iy).

Note that homeomorphism is a covering map, and the product of any two covering maps is a
covering map. 0

Theorem 74 (Uniformization Theorem) Any simply-connected surface is homeomorphic to
either S* or R?. That is, the universal cover of any surface is either S* or R?,

Remark 75 The only surfaces covered by S* are S> and RP?. Therefore, any surface other than
S?, RP?; is a K(G, 1) space for some group G.

Theorem 76 [GHS81, Theorem 22.14] Any connected non-orientable manifold has a connected
orientable two-fold cover. In other words, the fundamental group of a connected non-orientable
manifold has an index two subgroup.

Remark 77 Below are some illustrations of Theorem 76.

 Covering S** > x — {x, —x} € RP?". Note that RP" is orientable if and only if m is even.

* Covering from annulus to Mobius strip

R x [—1,1] R x[—1,1]
2 |x, e .
G~ Gt Ly o e e e L)

* Covering from Torus to Klein bottle

)

[2S7 t]K

if
2s—1,1—1flx if

I/\ I/\
P—‘ [t.)p—‘

(627ris7627rit) — {

<s
1
> <t

Theorem 78 There is no retraction from the Mébius strip to its boundary circle.
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Proof. Let

(=117 x [=1, 1]
c—1.1 —1.1 M =
O: =L L = M= 50 )

be the quotient map. Then, 9M = Q([—1,1] x {£1}). Let C := {Q(x,0) : =1 < x < 1} be the
central circle. Consider inclusion maps i: C < M and j: OM — M. Letry: M > Q(x,y) —
0(x,0) € C.

Note that ryoj: OM — C is a two-fold covering map, i.e., after suitable parameterization, we can
say rgoj: OM = S' 5 z+—— 72 € S! = C. Hence, (ry 0 j)s: m(OM) — m(C) is multiplication
by 2.

If possible assume there is a retract r: M — OM, then r o j = Idgy,. Now, using Theorem 9

ro(iorg)oj~roldyoj=Idsy

— (ro(ior) o)), : m(OM) =7 = 7= m,0M).
Also, (r o(iorp) oj) , = (roi), o(rgoj), that is composition of these two maps (79 ). : m(OM) =

7 X% 7 m(C)and (roi),: m(C) = Z Xy 7, o~ m1(M), contradicts the fact that (ro(ioro) oj)*
is multiplication by +1 in Z. [

Theorem 79 Let p: S* — RP? be the quotient map and Y. be a simple closed curve in RP?.

Then p~ () is either a simple closed curve or is a union of two disjoint simple closed curves in
S2.

Proof. Letf: [0,1] — RP? be a map such that f(s) # f(t)if 0 < s,¢ < 1 and £(0) = f(1), and
im(f) = Y. Write [x] := £(0) = f(1) for some x € S*.

Now, let f*,f~:[0,1] — S? be the lifts of f with f¥(0) = x and f~(0) = —x. Note that
p~'(lal) = {a, —a} for every a € S*. By uniqueness of lifting, f = —f~.

Observation. If 0 < s,t < 1, then f(s) # f(¢), thus f*(s) # f(t) and f~(s) # f~(¢), and
[P #Af O aspft =f=pf.

Now, we have to consider two cases, namely /(1) = —x and f (1) = x.

(1) Since (1) = —x = f(0), define g := f x f~. By the above Observation, g(s) # g(¢) if
0 < s,t < 1. Thus g is a simple loop based at x with im(g) = im(f™) Uim(f~) = p~1(2).

(2) Now, consider the case when f*(1) = x. Thus, by the above Observation, we can say
that f~(s) # fT () if 0 < 5,7 < 1, i.e., both f* and f~ gives disjoint simple loops. Since
im(f™) Uim(f~) = p~!(X), we are done.

]

Definition 80 Here we define Pullback in the category Top. Define A xp Y = {(a,y) €
AxY|f(a) = g(y)} andletg, f be the restrictions of the projections on first and second components,
respectively.
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Thengivenanyh: Z — Y andk: Z — A withgoh = f ok, we have aunique map(: Z — A XgY
such that following diagram commutes. Actually, (: Z > 7 — (k(z), h(z)) € A xp Y does the
job.

Lemma 81 Letg: Y — B be a homeomorphism andf: A — B be amap. Theng: A XxgY — A
is a homeomorphism.

Proof. Take Z = A, k = 1d4, h = g ' of. Then, { = (Ids,g ' of) and go ¢ = Id,4. Now,
logla,y)=Lla) = (a,g " of(a) = (a,y),ie., l0g =Idsx,y. O

Theorem 82 ILetg: Y — B be a covering map. Theng: A Xg Y — A is also a covering.
Proof. Take an admissible open subset U of B, and write g~ '(U) = |_|, V; with g|V; =5 U. Then,
W) =F (7)) |_|f (V).

Now, gf‘l(v,-) = f~1(U) is the pull-back of the homeomorphism g|V; = , S0 we are done by
Lemma 81. 0

Theorem 83 Letg: Y — B andf: A — B are covering maps. Thenf: A xz Y — Y is also a
covering.

Proof. Take an open subset U of B such that g='(U) = | |. V;and f~'(U) = W with g|V; U
P 8 i 8

and f|W; SU (note an open subset of an admissible set is also admissible). Then,

L[z =3"'(F"'w) =F (') |_|f (V)
J
— 7 (') = |F vong '
I

Now, g[fﬁl(Vi) = £~ (U) is a homeomorphism as it is the pull-back of the homeomorphism
glVi = U, see Lemma 81. Therefore, §U_C—](Vi) N g_l(Wj) = f~'n W; = W; is a homeo-
morphism for each i,j. Also, g|V; = Uand flw; = U are homeomorphisms, i.e., we have the
following commutative diagram, where three arrows are homeomorphisms:

Flopng'w) —s v,
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Thusff_l(Vi) N g’l(Wj) — V; is also a homeomorphism, i.e., g~'(U) is an admissible open set
of the covering f with the sheets {fﬁl(V,-) Ng (W) :i,j } O

Theorem 84 Letp: E — X be a covering map and X is connected, then #p~'(x) = #p~!(x') for
all x, x' € X.

Proof. Let xy € X and consider the set S := {x € X|#p~'(x) = #p~'(x¢)}. Then S is non-empty.

Now, for x € S and and an evenly covered open nbd V of x write g~ (V) = |_| U; where each
ieA

U; is open in E with g|U; — V is a homeomorphism for each i € A. Now, for eachy € V we

have ¢~ !(y) N Uj is singleton, i.e., #¢'(y) = #\ = #¢'(x), hence, V C S. So, S is open in X.

Similarly, X \ S is open in X. Since, X is connected, S = X. OJ

Theorem 85 Letp: E — X be a covering andf,g: Y — E be such thatp o f = p o g. Then the
set of all points of Y where f and g agree, is a clopen subset of Y.

Theorem 86 Let (X, ®) be a topological group with identity element xy, and p: (E, ey) — (X, Xo)

be a covering map such that E connected, locally path-connected. Then there is a unique structure
of topological group on E for which ey is the identity element, and p is a group-homomorphism.

Proof. Letm: X x X 3 (x1,x) — x;x; ' € X. We wish to lift m o (p x p).

-7 S
(E, e0)
y
(E % E, (e0,e0)) —L— (X x X, (x0, %)) ———— (X, x0)

The criterion of existence of m’ is

m.(p x p).m (E X E, (e, €9)) C p.mi(E, ep).

This is equivalent to say that for any two loops o, 7 in E based at ey, the loop I': [0,1] > ¢ —
(p o a(t)) . (p o T(t)) ~! € X based at X is relatively homotopic to p o y for some loop 7y in E based
at ey, i.e., I' >, poy. But we know that I' ~,, (poo)*poT =po(ox*T). So, our required
Y=0*T. 0

3.1 Schematic construction of the universal cover of wedge
We follow the argument given in [Kup]. Let X and Y be two good spaces, e.g., CW-complexes,
topological manifolds, etc. We are interested in finding the universal cover of X V Y. We will

describe the drawing of the universal covering for a particular case, namely when the universal
cover p: X — X is a 3-fold cover and ¢: Y — Y is a 5-fold cover. The general case is analogous.
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3 fold ® @ 5-fold
Umversal Cover Universal CoverW

X

Step 0: Here, X V Y is the space obtained from X LI Y identifying red base-point of X with blue
base-point of Y. In the figure the fibers p~!(¢) and g~!(e) are illustrated.

X

Step 1: Take a copy of Y and at each point g~ !(*) add a copy of X using a point of p~!(e). Call
this space as A;. So, we now have a total of 10 red free vertices in the space A;.

Step 2: At each red free-vertex of A; attach a copy of ¥ using a point of g~'(e). Call this space
as A,. So, we now have a total of 40 blue free vertices in the space A,.
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Step 3: At each blue free-vertex of A, attach a copy of X using a point of p~!(e). Call this space
As.

Ultimate Step: If we continue (continue until no red/blue free-vertex remains) this way, the
final space X VY will be the universal cover of X V Y. Now, applying p on each copy of X
inside X V ¥ and applying ¢ on each copy of Y inside XVY , we have the universal covering map
XVY—=XVY.

3.2 Examples to illustrate schematic construction

How to Draw, some tips.

» Covering map is a local homeomorphism. So, the local nature of the connected base space
is repeated in the cover, and the number of repetitions is the same as the number of folds of
the covering. In particular, the cardinality of any two fibers will be the same.

* There will be no non-trivial loop in the universal cover.

* Let X be a connected, locally path-connected, semi-locally simply-connected space, and
p: (X, X)) — (X, xo) be its universal cover. Now, there is a bijection between (X, xg) =
1 (X7 XO)

p*ﬂ-l (X7 %) .
fiber is infinite.

and p~!(xy). In other words, if the fundamental group is an infinite group, then
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() Id: S* v S? — S? v §? is the universal cover

(2) The above map is the universal cover of RP? \/ S?

<
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(3) The above map is the universal cover of S' V §?
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(4) The above map is the universal cover of RP? V S!

(5) The above map is the universal cover of RP? V RP?

27



(6) The above map is the universal cover of two S? having two points in common

(7) The above map is the universal cover
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(9) The above map is the universal cover of S! vV §? v S!
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(10) The above map is the universal cover
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3.3 Covering spaces of graphs

Definition 87 [Hat02, 1.A Graphs and Free Groups] A Hausdorff space X is called a graph or
one-dimensional CW-complex if the following hold:

X:|_|€,'|_||_|Vj
i J

where each e; is a subspace of X and each v; is a point of X. Each e; is called an 1-cell or
an edge, and each point v; is called a O-cell or a vertex.

» For each i we have a continuous map ;: [0,1] — & such that y;|(0, 1) = e; and
©i(0), pi(1) € L v;.

* For asubsetA of X we have A Cjpseq X if and only if A N €; Cjosed €;-

Remark 88 Each {v;} is closed in X as X is Hausdortt.

Lemma 89 Let X be a graph. Any subset of the set of all vertices is a discrete closed subspace
of X.

Proof. Let A be any subset of | | ; vj» then A Nee; is either empty or two vertices or one vertex. In
other words, A Née; is closed in X, hence in ¢; also. Therefore, A is closed in X. Since A is an
arbitrary subset of |_|j vj, we are done. L]

Remark 90 Each edge e; is open in X as X \e; is closed in X.

s’
Example/Non-example \/ St =
z- L {1y
empty index set. Under the subspace topology of R?, the Hawaiian Earring is not a CW-complex,
as any compact CW-complex has only finitely many cells.

is a connected graph, where i varies over any non-

Theorem 91 [Hat02, Lemma 1.A.3] [Rot88, Theorem 10.43.] Let X be a connected graph
and p: X — X be an n-fold covering map, where n is a positive integer or infinity. Write
X = | ];e; U ;v; as in the above definition. Then, one can give a CW-complex structure on X

such that for each vertex v;, we have exactly n-many vertices in X, and for each edge e; we have
exactly n-many 1-cells in X. Roughly,

)~(:|_|n-el- LI |_|n-vj.
i J

Theorem 92 [Hat02, Exercise 10 Chapter 1.3] Let C be a collection of connected 3-fold cov-
ering maps of S' \V S! such that no distinct two elements of C are homeomorphic via a Deck-
transformation and given any 3-fold covering map X — S' /' S!; there is an element X' — S' v S!
of C such that X is homeomorphic to X' via some homeomorphism. Then |C| = 7.

Proof.
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Roughly, we want to find all connected 3-fold covers of S! V S!. Note that S' vV S! has a CW
structure with one vertex and two edges.

Step 1: So, every 3-fold cover has a CW-structure with three vertices

> O OEORR®

o)) ) 3)

Step 2: Also, every 3-fold cover has a CW-structure with three red edges. Since the end(s) of
an edge is either a single vertex or two distinct vertices, (1), (2), (3) are the only possibilities
of attaching three red edges to three black vertices. Note that a small nbd of the wedge point of
S! v S! is a wedge of four small arcs, out of which two are red arcs, and two are blue arcs.

(1.2.)

Step 3: Like red edges, every 3-fold cover has a CW-structure with three blue edges. Considering
only (1) from step 2, we have two possibilities of attaching three blue edges. Again, note that a
small nbd of the wedge point of S! V S! is a wedge of four small arcs, out of which two are red

arcs, and two are blue arcs. Notice that this pattern is repeated thrice near each black wedge point
of the covers (1.1.) and (1.2.)
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2.1)

S

(2.3.)

(2.4.)

Step 4: Like red edges, every 3-fold cover has a CW-structure with three blue edges. Considering
only (2) from step 2, we have four possibilities of attaching three blue edges. Again, note that a
small nbd of the wedge point of S! V S! is a wedge of four small arcs, out of which two are red

arcs, and two are blue arcs. Notice that this pattern is repeated thrice near each black wedge point
of the covers (2.1.), (2.2.), (2.3.) and (2.4.)

Step S: Like red edges, every 3-fold cover has a CW-structure with three blue edges. Considering
only (3) from step 2, we have exactly one possibility of attaching three blue edges. Again, note
that a small nbd of the wedge point of S! V S! is a wedge of four small arcs, out of which two are
red arcs, and two are blue arcs. Notice that this pattern is repeated thrice near each black wedge
point of this cover.

This shows C can have at least 7 elements (one needs to check that the above covers are pairwise
non-isomorphic; note that the last cover is homeomorphic to cover of 2.2. but not via a Deck-
transformation, see Remark 96). Notice that at each step, we have considered all possibilities of
attaching an edge to a vertex or two vertices. Thus, C can have at most 7 elements. U

Theorem 93 [Hat02, Exercise 10 Chapter 1.3] Let C be a collection of connected 2-fold cov-
ering maps of S' V S! such that no distinct two elements of C are homeomorphic via a Deck-
transformation and given any 2-fold covering map X — S' /' S!; there is an element X' — S' v S!
of C such that X is homeomorphic to X' via some homeomorphism. Then |C| = 3.
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Theorem 94 Letp: (X, xy) — (B, by) be a finite-covering space such that X is path-connected.
The following are equivalent:

 The covering is regular: for every x,x € p~'(by) we have a deck transformation (a
homeomorphism, h: X — X with p o h = p) such that h(x) = x'.

* p.m(X,xp) is a normal subgroup of 7(B, by).
 The number of deck transformations is same as #p~'(by).
Remark 95 All 2-fold path-connected covers are regular as index-two subgroups are normal.

Remark 96 Consider any finite-fold cover of S! vV S!'. A deck transformation d sends

* avertex to a vertex,

blue (resp. red) edges to a blue (reps. red) edges,
* an edge e with end-points P, Q to the edge d(e) with end-points d(p) and d(Q),

a loop [ to the loop d(1).

The 3-fold covers (1.1.) and (1.2.) are irregular as each of these contains only one red loop.
Similarly, the 3-fold covers (2.3.) and (2.4.) are irregular as each of these contains only one blue
loop. But, the covers (2.1.), (2.2.), and (3.1.) are regular.

Definition 97 For a finite graph X, i.e., the number of 1-cells and the number of O-cells both are
finite; define Euler characteristic as

X(X) := number of vertices — number of edges.
Remark 98 Ifp: X — X is an n-fold covering then X(SZ) =n- xX)

Definition 99 Let X be a graph, a subspace Y of X is said to be a sub-graph of X if Y can be
written as a union of edges and vertices of X such that if the edge e; C Y thene; C Y. Note that a
sub-graph itself is a graph.

Definition 100 A simply connected graph is called a tree. One can show a tree is contractible.
Roughly, a tree doesn’t contain a non-trivial loop.

Definition 101 A sub-graph T of X is called a maximal tree if the graph T is a tree and T contains
all the vertices of X.

Theorem 102 [Hat02, Proposition 1.A.1] Using the axiom of choice, one can show that every
connected graph contains a maximal tree.

Theorem 103 [Hat02, Proposition 1.A.2] Let X be a connected graph with a base-vertex v,. Fix
an orientation on each edge. Let T be a maximal tree of X. Then each edge e; C X\T determines
a loop {; in X based at v, as follows: starting from v, go to a vertex of e; by a path in T, then cross
e; following its orientation, then back to vy by a path in T. Then,

m(X,vo) = ([¢;] : where ¢; is the loop corresponding to the oriented edge e; C X\T).
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4 Lifting Problems

Theorem 104 Let p: (E,ey) — (X,x) be a covering map and and H: [0,1]> — X be a map
such that H(0,0) = xy. Then there exists a map H: [0,1]*> — E with H(0,0) = e, such that the
following diagram commutes.

(E, eo)

37 T
e P

(10,11 x [0,11,(0,0)) —— (X, x0)

Corollary 105 Suppose H in Theorem 104 is a path homotopy, i.e., H(0, —) = aand H(1, —) = b.
Thus H(0, —) maps into the discrete space p~'(a) and H(1, —) maps into the discrete space p~!(b).
Therefore, H is also a path homotopy, i.e., H(0, —) and H(1, —) are constant maps.

Theorem 106 (Monodromy Theorem) Letg: (E,e) — (B, b) be a covering map. Suppose f and
g are paths in B with the same initial point and the same terminal point, and f,, g, are their unique
lifts with the same initial point e € E. Then,

fo 1101} 8 = f el {01} &
So, in particular, f ~ (0,1} & implies;‘;(l) =g.(1).
Proof. For H: f =~ (0,1} g and corresponding unique lift H: ([0, 11%,(0,0)) — (E,e) we can

sayfe = H(—,0) and g, = H(—, 1) by the uniqueness of lifting. Note that H(0,1) = g,(0) as
H (0, —) is constants by previous statements. [

Theorem 107 Letp: (E,ey) — (B, by) be a covering such that E is path-connected. Define,

7T1(B7 bO)

7 —1
(B eo) > cls([f1) ¥ f(1) € p~'(bo)
Where?: ([O, 1], O) — (E, ey) is the unique lift of f.

Then @ is a bijection.

Proof. ® is well-defined: Suppose, cls([f]) = cls([g]) in -E20 5o write [f] = [(p o h) * g],

_ » pxmi(E,e0)’
where h : ([0,11,{0,1}) — (E, o). Letf,g : ([0, 1],0) — (E, e) be the unique lifts of f and g,
respectively. Then, & * g is well-defined and
po(hxg)=(poh)x*g.
Since, f,h = : ([0,11,0) — (E, eo) and f ~e1 10,1} (P © 1) * g we have f ~ (0.1} h*3.

® is injective: Suppose, for cls([f]) and cls([g]) in % we have f(1) = (1) where f,3 :

([0, 1], 0) — (E, ey) be the unique lifts of f and g, respectively. Now,
(7* E) * 8 el {O,]}f

36



= po ((7*?)*@ ﬁrel{o,l}Pof
= (p © (?*g)) *g 2rel{O,l}f
= (p.If*g))-lgl=1If].

® is surjective: For any e; € p~!(by) choose a path v : [0, 1] — E with v(0) = ey and v(1) = e;.
Consider f := p o 7. Then, ® sends cls([f]) to y(1) = e;. O

Corollary 108 Using the injectivity of ® one can show that for f : ([O, 11,10, 1}) — (B, by) we
have [f] € p.m(E,ey) <= f lifts to a loop in E based at e,.

Corollary 109 Letn > 2. Considering the 2-fold covering S" 5 x —— [x] € RP" and S" is
simply-connected we have 7| (RP") = Z,. Note thatRP' > [z] — 7> € S! is a homeomorphism.

Corollary 110 In Theorem 107, #p~'(by) = n implies index of p,m(E, ey) in w(B, by) is n.

Theorem 111 Let X be a path-connected and locally path-connected space such that m(X) is
finite. Then every f: X — S' is null-homotopic. In particular, 7,(S") = [(S",%),(S',1)] is a
trivial group forn > 2.

Proof. Consider the lifting given below; lifting exists as f,m(X, xo) is a finite subgroup of Z, so
the algebraic condition of lifting is satisfied as any finite subgroup of Z is the trivial group.

(R,0)
= 1
3/!/f, -7 ltr——>exp(27rit)
(X, x0) ——— (S, 1)

Now, consider the homotopy H: X x [0, 1] — X given by
H(x, 1) := exp (27i - (1 — 0)f (x)) for x € X, 1 € [0, 1].
O]

Remark 112 Recall that we defined degree of a map f: (S', 1) — (S!, x) as follows: Consider
the map f;: [0,1] > t — f(e*™) € S'. Then f(0) = *. Let €™ = x for some € R. Now,

consider the unique lift f; : (10,11,0) — (R, ®), i.c., 2 () = f. Define,

deg(f) = fi(1) — f1(0).

Theorem 113 Every odd map S' — S' has an odd degree.
Proof. Now, letf: (S!,1) — (S', ) be a odd map. Then,
eZiﬂjﬁ(Z+%) :f(_eZiﬂ't) — _f(eZiﬂ't) — _eZiﬂﬁ(t) — eZiW(ﬁ(l‘)"F%) forallz € [0’ l]
So there exists m € 7Z such that
Alie D —fo+ Ly
t\'Ty) T mbmyTm
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Finally,

R+ 1) —fit) = {ﬁ(w H-f <r+ %)} + [fi (w%) —ﬁ(r)} —om4 1

and the degree of f is odd. 0

Theorem 114 Letn > 2. Then there does not exist p: S" — S! such that (—x) = —(x) for
allx € S".

Proof. Suppose, such a p: S" — S! exists. Then ¢ null-homotopic by Theorem 111. Consider
the inclusion i: S' < S". Then ¢ o i is also null-homotopic. In particular, deg(y o i) = 0. Also,
@ oi1is an odd map, i.e., deg(y o 7) is an odd integer by Theorem 113, a contradiction. [l

Theorem 115 (Borsuk-Ulam Theorem) If f: S" — R" is a map then there exists x € S" such
that f(—x) = f(x).

Theorem 116 Let G be a group with identity element e, which may or may not have topology,
acting on a simply-connected topological space X such that for each g € G the map X > x —
g - x € X is continuous. That’s G acts on X continuously.
Suppose also that G acts discretely, i.e., for each x € X there is an open neighborhood U of x such
that

UNgU =@ forall g € G\{e}.

Consider the orbit space X/G = —%— with quotient topology obtained from quotient map

Xrog-Xx

q: X — X/G. Choose xy € X and define ®: G — m(X/G, [xy]) by

®: g [go(pathinX fromx, tog - x)|.

Then, ® is a group isomorphism.

Proof. The quotient map g : X — X /G is a covering map: For any x € X consider a nbd U of x
as above. Then,

q_l(q(U)) = |_| g U gopen X.

geG

® is well-defined:Given g € G, let o be a path in X from x, to g - xo, we have g o « is a loop
in X/G based at [xo] € X/G. For any other path 5 in X from x, to g - xy, we have a homotopy
H: o >~ 10,1y B as X is simply connected, so go H: g o a ~j ¢ g0 5.
® is a group homomorphism: For g, g, € G, consider a path ~y in X from x, to g - xo and another
path ¢ in X from x, to g, - xo. Then, 7 * (g, - ) is a path from x, to (g;g2) - xo.
® is surjective: For aloop I': [0, 1] — X /G based at [xy]. Then, for any lifting r: [0,1] = X of
I" we have f(O) = Xxp and f(l) = g - xo for some g € G. So, ®(g) = [I'].
® is injective: Suppose for some g € G and some «: [0, 1] — X from x, to g - xo we have

PO iy Clal

Now, a(0) = xo = C,,(0). So, Theorem 106 gives that a(1) = C,,(1)sothatg-xgo =xp = g=e
as group action is discrete. 0
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Examples

* Consider the group action of Z" on R" by addition. The orbit space is (Sl)n.
* Letn > 2 and consider the {41} action on S” as (¢, x) — ¢ - x. The orbit space is RP".

* Consider the Z action on R x [—1, 1] given by (n, (x, y)) — (x + %n, (—1)”y). The orbit
space is the Mobius strip.

e Let G be the of self-homeomorphisms of R? generated by A: R? > (x,y) — (x+1,1—y) €
R? and B: R? > (x,y) — (x,y + 1) € R% Then R*/G =Klein bottle. Note that G is
non-abelian.

e Letp,g € N with gcd(p,q) = 1, p and g no need to be primes. Consider the group action
Z, x S* — S* given by

2mik 2mikg
(klp, 21, 22)) — (e > 2, e ZZ)

for all (z1,22) € C* with |z;|> + |z2/*> = 1. The orbit space is an orientable 3-manifold,
called lens space, and denoted by L(p, q).

Theorem 117 Let Y := C*/K where C* := C\ {0} and K is the group of homeomorphisms
{¢" : n € Z} with p(z) = 4z. Then, the fundamental group of Y is 7 X Z.

Proof. O

Theorem 118 (Primary decomposition of finitely generated abelian group) Every finitely gener-
ated abelian group G is isomorphic to a group of the form Z" ® Z X S DL s for some integers

n,t > 0; and primes (not necessarily distinct) py, ..., p,; and non- negauve mtegers (not necessarily
distinct) 0y, ..., ¢;.

Theorem 119 Given any finitely generated abelian group G, we have a path-connected manifold
M such that m{(M) =

Proof. Consider Theorem 118 with the manifold M == (S')" x L (p{",1) x --- x L (p,1) O

Theorem 120 [Hat02, Page 30] [Rot88, Theorem 10.5] Let p: X > Xbea covering space and
Y be a connected space. Then, the commutative square on the left has a unique solution, which is
the commutative square on the right.

y —L X y —— X
yH(y,O)l P yH(y,O)l H'F P
Y><[01]—>X Yx[O,l]T>X
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Theorem 121 [Hat02, Exercise 8 Chapter 1.3] Let X, Y be simply connected covering spaces of
path-connected, locally path-connected spaces X and Y, respectively. ThenX ~ Y impliesX ~ Y.

Proof. Let f: (X,x9) — (Y,y0) be a homotopy-equivalence with h: (Y,y)) — (X,x;) as a
homotopy inverse, ie., foh ~ Idy and h o f ~ Idy. Let p: (X,X,X;) — (X,X0,x;) and
q: (Y,y,) — (Y, yo) be the universal covering maps. Consider the two lifts below.

(Y. ) (X,x1)
E //7 l E /,? l
e q e p
(X, Xo) — Y, yo0) (Y, %) i (X, x1)

Now, fp o hq is a lift of fhg, and F: fhq ~ q. To see these notice that
go (frohq) = (qofp) ohg=fpohq=fo(pohg)=fohgand

fohg=fhog~Idyoqg=gq.

Applying Theorem 120 w.r.t the covering g: ¥ — Y and homotopy F: fhq ~ g, we have
homotopy lifting F: (fp o hq) ~ F(—, 1), where go F = F. In particular, g o F(—, 1) = q. Then,
F(—,1): Y — Y is a homeomorphism, see [Rot88, Corollary 10.15.]. Hence,

(fp o hq) ~F(—,1) = (F(—, 1))71 o (fpohq) ~1dy = hq has a homotopy left-inverse.

Similarly, ig has a right-inverse: p o (hgofp) = hgofp = hofp ~ Idy o p = p. Applying
Theorem 120 w.r.t. the covering p: X — X and homotopy G: hfp ~ p we have homotopy lifting
G: (hgofp) ~ G(—,1) with po G(—, 1) = p. Then G(—,1): X — X is a homeomorphism. So,
hgofpo (G(—,1)) ~! ~ Idg. Therefore, hig: ¥ — X is a homotopy-equivalence. O

Remark 122 If a square matrix has left and right inverses, then the matrix has THE inverse.

Theorem 123 [Hat02, Exercise 17 Chapter 1.1] There are infinitely many non-homotopic re-
tractions S' vV §! — S!.

Proof. Notethat S'VS' = (S' x {1}) U ({1} x S'). For k € N, define retraction r¢: S' VS' —
St x {1} by
ri(a,1) = (a,1)foralla € S',

r(1,b) = (b, 1) forall b € S'.

Hence rifgi, ¢y = sty and 7| gy, {1} xS' = S"x {1} is k-fold covering map. So, r¢ % 1,
ik AL 0

Theorem 124 [Hat02, Exercise 16.(e) Chapter 1.1] If X is D* with two points on its boundary
identified and A is its boundary S! V' S!, then there is no retraction from X — A.
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Proof. Let q: D* — % =~ X be the quotient map. Now, H: D? x [0,1] > (x,y,1) —
((1 — X, y) — D? is a strong deformation retract of D? onto the line-segment £ := {0} x [0, 1].
Thus

H: X x[0,113 ([x,y1,£) — [0 —Ox,y] € X

is a strong deformation retract of X onto g(¢). Now, g(¢) = S' implies 7(X) = Z. So if there
were a retraction r: X — A, the inclusion induced map Z * Z = m(A) — m(X) = Z would be
injective, which is impossible as Z * Z is non-abelian. [

Theorem 125 The fundamental group of S'! \V S! is non-abelian.

(0,3)

(0, 1)

e
o

0 0 0

(0,0) (1,0) (2,0) (3,0

An infinite fold cover of S' v S!

Proof. Consider the above cover of S! V S'. Now, define a path A % B as follows: A * B starts
at (0, 0), then traverses the blue horizontal straight line segment until it reaches (1, 0), and finally
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traverses the B; loop anti-clockwise once. Similarly, define a path B+ A as follows: B * A starts
at (0, 0), then traverses the red straight vertical straight line > segment untll it reaches (0, 1), and
finally traverses the A; loop anti-clockwise once. Note that A % B and B A are lifts of A x B and
B x A, respectively starting at (0, 0).

Now, if possible let [A][B] = [B][A] in 7;(S' V S',p), where p is the wedge point. Thus
A * B ~, B*xA, and by Theorem 106, the endpoint of A * Bis the same as the endpoint of B x A,
i.e., (1,0) = (0, 1), which is impossible. So [A][B] # [B][A], and we are done. O
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S Calculating the fundamental groups of manifolds and CW-
complexes

5.1 Seifert-Van Kampen theorem

Definition 126 Let G be and H be two groups. We consider the set G x H of all finite sequences
(x1, ..., x,,) such that the following conditions are satisfied:

» each x; lies in one of the groups G or H,
* no x; is the neutral element of G or of H,

* any two consecutive x;’s lie in two different groups.

Here we also allow the empty sequence (). Such sequences are sometimes called reduced words
in G and H.

Now, define a group structure on G x H. Given two sequences (X1, ..., X,,) and (yy, ..., ¥,), we stack
them together (x, ..., X, V1, ..., ¥,) and then we delete any occurrence of a subsequence of the
form a,a™! fora € G or a € H and if a subsequence is of the form a, b witha,b € Gora,b € H,
then we replace it by ab.

We henceforth refer to G « H together with this product structure as the free product of G and H.
Definition 127 For a set S we refer to
(S) = free product of the infinite cyclic groups generated by s € S

as the free group on the (generating) set S.

Definition 128 Let G be a group and let A be a subset of G. Define

subgroup of G normally generated by A == A = ﬂ H
ACH<G
Definition 129 Let G be a group. A presentation of G is a collection: A set X, a subset R of the
free group (X), and an isomorphism G — (X|R) = % If X and R both are finite sets, then we
say G is finitely presented.

Definition 130 Let a: G — A and 5: G — B be two group homomorphisms. We define the
amalgamated product A x B of A and B with amalgam G as
o AxB

{a(g)B(g) g € G}

A *xs B

Definition 131 Let G be a group and let A .= {xyx~'y~'|x,y € G}. Define the abelianization
Gy of G as Gy, =

=(Q
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Theorem 132 Leta: G — A, 5: G — B, E: H — B,andv: H — C be group homomorphisms.
Now, we have the following:

(1) If G = {e}, thenA x¢ B=A*B.

_ __A
(2) If B={e}, then A xzB = G

(3) If 8 is an isomorphism (resp. epimorphism), then the obvious map A — A s B is also an
isomorphism (resp. epimorphism).

4) (AxgB)*y C=ZAxg(Bxy ).

(5) Lety: H— G be an epimorphism. Using « o p: H — A and 3: p: H — B, we can talk
about A xy B. Now, the natural map A x; B — A %y B is an isomorphism.

(6) If a and 3 are both monomorphisms, then the natural homomorphisms A — A % B and
B — A x¢ B are also both monomorphisms.

(7) (G * H)yp = Gy X Hy,. In particular, (xq, ..., x, ) = Z".

Theorem 133 (Seifert-Van Kampen theorem) Let X be a topological space and let X = UUV be a
decomposition of X in two open subsets U and V such that UMV is non-empty and path-connected.
Let xo € U N V. Then there exists an isomorphism ®: (U, Xo) *x,wnv.x) T1(V,X0) — m1(X, xo)
such that the following diagram commutes:

m(U NV, x) > m(U, xo)

| |

mi(V,x0) ———— m(U,X0) *x,wnv.x) T1(V, Xo)

Here all the undercoated maps are the obvious inclusion-induced homomorphisms.

Remark 134 InTheorem 133, the inclusion induced maps 7, (U, xo) — (X, xp) and 7m;(V, x9) —
(X, Xxp) gives a surjection m (U, xo) * m1(V, x0) — m(X, xo). In particular, if U and V are simply-
connected, then X is also so.

Remark 135 By Remark 134, the suspension of path-connected space is simply-connected.
Remark 136 Consider Theorem 133 again. If U N V is simply-connected, then the inclusion

induced maps (U, xy) — m(X,x0) and m(V,x9) — m(X,xp) gives a bijection (U, xp) *
T (V, x0) = m(X, xo).
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Definition 137 We say a point x in a topological space X is good, if {x} is a closed subset of X
and there exists an open neighborhood U of x such that x is a deformation retract of U.

Remark 138 Every point of a topological manifold or a CW-complex is a good point.

Theorem 139 Let A, and A, be two path-connected topological spaces, and let a; € A and
a, € A be good points. Then, the inclusion maps induce an isomorphism (A, a)) *7 (A, ax) —
(A1 V Az, a1 = ay).

Proof. We pick an open neighborhood W, in A, of that deformation retracts to a,. Furthermore,
we pick an open neighborhood W, of a, in A, that deformation retracts to a,. We consider
U:=A VW, Copen Ay VAyand V = W; V Ay Copen A1 V Ay, Note that A (resp. Ay) is a
deformation retract onto U (resp. V) and U N V has a deformation retract onto xy = {a;,a,} €
A VA,;. Therefore, the inclusion induced maps 7 (A, a;) — m(U, xo), m1(Az, az) — m(V, xq) are
1isomorphisms and 7 (UNV, xy) is trivial. Thus the inclusion induced map (A, a;)*m1(Az, az) —
m (U, xp) * m(V, Xp) 1s an isomorphism. Now, by Remark 136, we are done. L]

Remark 140 Let n be a positive integer. An induction on n together with Theorem 139, says
that r (\/"S') 2 Zx---xZ.
——

n-times

Theorem 141 Let M be a topological manifold of dimension n > 3. Let p be a point and let
xo € M\ {p} be a base point. Then, the inclusion induced map m; (M \ {p},x0) — ™1 (M, x0) is
an isomorphism.

Proof. Since M is locally R”, pick an open ball B(p,r) C M of radius r centered at p. Define
U:= Bp,r)and V .= M\ {p}. Now, UNV = B(p,r) \ {p} = "' x (0,1) ~ S is
simply-connected as n > 3. Now, by Remark 136, we are done. U

Lemma 142 Let X be a topological space. Furthermore, let A and B be two subsets with
X = AUB. IfAN B is a deformation retract of B and if A and B are closed subsets of X, then A is
a deformation retract of X.

Proof. We pick a deformation retraction F': B x [0,1] — AN B of B onto A N B. Now, define
G: Xx[0,1] = XasG(x,t) = xif (x, 1) € Ax[0,1]and G(x,t) = F(x,t)if (x,t) € Bx[0,1]. [

Theorem 143 (Topological Collar Neighborhood Theorem) Given a topological manifold M,
there is an embedding p: OM x [0, 1] < M such that p(p,0) = p for p € OM, im(¢) Ciosea M,
and p(OM x [0,1)) Copen M.

Theorem 144 Let M be an m-dimensional topological manifold and let R, S C jpseq M be two
m-dimensional submanifolds such that RUS = M and RN S is a component of JR as well
as a component of 0S. Then for any base point x, € R N S, the inclusion induced maps
T1(R, X0) *x,(RNS,x0) T1(S, X0) — ™1 (M, Xo) 1s an isomorphism.
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Proof. By Theorem 143, letf: OR x [0,1] < Rand g: S x [0, 1] < S be two collars. Define
U=RUg([0,1) x (RNS)), V:=SUf([0,1) x (RNS)).

Now, RN U =R Copen Rand SN U = g([0,1) X (RN'S)) Copen S as g([0, 1) x (RN S)) is open
in M. Since R and § are closed subsets of M with M = RU S, the set U is open in M. Similarly,
V is open in M.

Also, R = RN U Cseq U as R is closed in M and g([O, xRN S)) =SNU Coseq U as U is
closed in M. Thus by Lemma 142, R is a deformation retract of U. Similarly, S is a deformation
retract of V.

One can also show that R M S is a deformation retract of U N V. Thus the inclusion induced map
T (RNS, x0) = m(UNV, xp), (R, x9) — ™1 (U, xp), and 71(S, xo) — m(V, x0) are isomorphisms.
Now, we are done, as Theorem 133 tells that the the inclusion induced maps give an isomorphism
T(U, X0) *x,unv,x) T1(V, X0) — m1(M, Xo). O

5.2 Connected sum of two closed smooth manifolds

Theorem 145 (Palais disk theorem) Let M be a closed smooth n-manifold, where n > 2. If
M is orientable, then we pick an orientation for M. Let ¢, ¢,: B" < M be two smooth
embeddings (if M is oriented, we demand that either ¢, ¢, both are orientation-preserving or
©1, > both are orientation-reversing). Then there is smooth homotopy H: M x [0,1] — M
through diffeomorphisms starting from Id,, such that H(—, 1) o ¢ = 5.

Let M, N be two connected closed smooth n-manifolds, where n > 2. Let o, p,: B" < M and
Y1,1,: B" < N be smooth embeddings. We will write ¢, = , (resp. ; = 1) if there is a
diffeomorphism f: M — M homotopic to Idy, (resp. g: N — N homotopic to Idy) with fip; = ¢,
(resp. g1 = 10,). Define two smooth manifolds (smoothness checking is technical!)

(M \ pu(BM) U (N \ 1(B")
ou(p) ~ Ui(p), p € S

Remark 146 Suppose ¢, = ¢, and ¥y = 1. Choose diffeomorphisms f: M — M and
g: N — N withfo, = ¢, and gy = 1»,. Now, the map M4, N — M, 4, N defined by

Mﬁ(@k7¢k)N = fork = 1, 2.

PN f) ifxe M\ oi(B"),
glx) ifx € N\ ¢ (B").

is a diffeomorphism (checking smoothness of this map is technical!).

Case 1: Both M, N are non-orientable. By Theorem 145, ¢p; = ¢, and ¢y = 1,. Thus
Mﬁ(%ﬂlil)N = Mﬁ(@zywz)N by Remark 146.

Case 2: Next, suppose M is oriented and N is non-orientable. Thus ¢; = ¢/,. Now, we consider
two sub-cases, namely ¢ = ¢, and ¢ Z ;.

* If former happens, then Mi,, » )N = M, 4, N by Remark 146.
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« For the later, ;7 = ¢, for any orientation-reversing diffeomorphism 7: B — B
Thus M, rpnN = Mi, )N by Remark 146 since 17 = ¢, and ;7 = 1,. Now,
Mﬁ(¢177¢17)N = ij(8017¢1)N by definition.

Therefore, M4y, )N = M, 4, N in any case.

Case 3: If N is oriented and M is non-orientable, the same argument as in Case 2 tells that
Mlj(w,d)l)N = Mﬁ(WZ7¢2)N'

Case 4: Finally, consider both M, N are oriented.

(a) If o1 = ¢, and Y| = ¥, then we can show that M, » N = Mf,, )N by Remark 146.

(b) If v # ¢, and ¥, # 1)», then for any orientation-reversing diffeomorphism 7: B — B,
we have o7 = ¢, and ;7 = 1, i.e., again using Remark 146, we can show that
Mo, )N = MmN = Mg, )N

(c) Ifpi # prbutyy; = 1, (or g = sy buty)y Z 1), then M4, ,,N may not be diffeomorphic
to Mﬂ(@z,wz)N'

(d) If o1 = @y but ¢y # 9y, then M, N may not be diffeomorphic to M4, ,)N.

Remark 147 Consider the Case 4 above. Note that for two other embeddings ®: B" < M and
U: B — N, either ij(quxp)N = ij(gm ,wl)N or Mﬁ(cpj\p)N = Mﬁ(wzﬂliz)N'

Remark 148 Consider the Case 4 (c) above. Suppose, ¢: M — M is an orientation-reversing
diffeomorphism (for example, M can be any closed orientable surface), then fyp; = ¢, by
Theorem 145. Choose diffeomorphism f: M — M with f(6p,) = ¢, i.e., f0 is a diffeomorphism
taking o) to ¢, i.e., 1 = ¢,. By Remark 146, M, » N = M, 4, N. Thus if either of M or
N has an orientation-reversing diffeomorphism M4, », N = Mf,, 4, N, in any case.

Remark 149 If M, N are orientable, then M, N and M4, ,, N are also so.

Theorem 150 Let M,N be two connected closed smooth n-manifolds, where n > 3. Let
¢: B" < M andv: B" — N be smooth embeddings. Then

T (MouN) = m(M) i (N).

Proof. LetX =M\ ¢(B") C M4, N and Y := N\ ¢([B") C Mt ,N. Thus XUY = M, , )N
and X N Y = S"! is simply-connected. By Theorem 144, the inclusion induced maps 7 (X) —
T (Mf»N) and m(Y) — 71 (Mf(,,0)N) gives the isomorphism 7 (X)) #(Y) = 1 (Mfpp)N).
Alsoo M =X Up (IB7) and X N (137) =~ §"~! is simply-connected. Again by Theorem 144, the
inclusion induced map 7;(X) — 7;(M) is an isomorphism. Similarly, the inclusion induced map

m(Y) — m(N) is an isomorphism. So, we are done. [
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5.3 C(lassification of closed surfaces

Consider the bordered surface obtained from deleting the interior of a closed disk inside the Klein
bottle (resp. torus). In Figure 1, their equivalent planar representations are given.

12
12

Fig. 1: One-holed Klein bottle and one-holed torus

Definition 151 Let g be a positive integer. Consider a regular 4g-gon E4, and label each edge
of E4, by the symbols ay, by, ..., a4, b, (each a; or b; appears twice) so that after orientating each
edge of E,,, the boundary OE,, = S! can be described by the word a;bya; 'b;" - - - agbgag*lbg*l.

Now, we identify the (4j 4 1)-st edge with the (4j 4 3)-rd edge and the (4j + 2)-nd edge with the
(4j + 4)-th edge following the orientations provided. Denote the quotient space by >.,.

Fig. 2: 3, is homeomorphic to (S' x SHH(S! x Sh)

Definition 152 Let 4 > 2 be an integer. Consider a regular 24-gon E,, and label each edge of
E,;, by the symbols ay, ..., a, (each a; appears twice) so that after orientating each edge of E»;, the
boundary OE,, = S' can be described by the word a7 - - - a;. Now, for any i, we identify two a;-th
edges following the orientation provided. Denote the quotient space by N,.

Theorem 153 The quotient space N, is homeomorphic to Klein Bottle.
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*%—*A A\

Fig. 3: Transformation of Klein Bottle to N,

Proof. See Figure 3. [

Theorem 154 Let D be a closed disk embedded in RP?. Then RP? \ int(D) is homeomorphic to
the Mobius strip.

Proof. Observe that RP? is obtained from closed unit disk ID* with the identification z ~

—z, where z € S'. Now, consider Figure 4, where we consider our favorite disk. For a gen-
eral disk, consider Theorem 145. O

N

/N

Fig. 4: The second row shows that RP? minus a interior of small disk is the Mobius strip

AN

Fig. 5: An alternative presentation of Mobius strip, i.e., one-holed RP?
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Fig. 6: Klein bottle is the double of Mobius strip

Theorem 155 Klein Bottle is homeomorphic to RP*{RP?,

Proof. The Figure 6 shows that the Klein bottle is the double of the Mdbius strip. Now, applying
Theorem 154, we are done.

[
Theorem 156 (S' x S"Y#RP? is homeomorphic to RP*fRP*§RP>.

Proof. At first, observe Figure 1 and Figure 5. Now, consider Figure 7 below. O]

e

A

N

Fig. 7: Transformation of Klein bottlefRP? to (S' x S")iRP?
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Theorem 157 [Leell, Theorem 6.15.] Every nonempty, compact, connected 2-manifold is
homeomorphic to one of the following:

 The sphere S?;

* A connected sum of one or more copies of torus T? := S' x S, i.e., #,T? := T? - - - 4T%;
————

n-copies of T2

* A connected sum one or more copies of the real projective plane, i.e., #,RP? := RP*4 - - - {RP?.
N————

n-copies of RP?

Remark 158 Let g,7 > 2 be integers. Now, planar representations of >, and N, tell that
Y, 23, 1fT? and N, = N, fRP?. Thus, §,T? = ¥, forall g > 1 and §,RP? = N, forall A > 2.

Theorem 159 Suppose we attach a collection {2}, of 2-cells to a path-connected space X via
maps ©,: S! — X, producing ¥ := X ]_[% @ Let xo € X and v, be a path from x to (1) for
each a. Consider the normal subgroup N of (X, xy) generated by all [V,¥a7] for varying o.
Then the kernel of the inclusion induced map (X, xo) — m(Y, xp) is N.

Proof. Define a space Z as follows: The space Z is obtained from Y by attaching rectangular
strips S, := [0, 1] x [0, 1], with the lower edge [0, 1] x O attached along ~,,, the right edge 1 x [0, 1]
attached along an arc that starts at ¢, (1) and goes radially into €2, and all the left edges 0 x [0, 1]
of the different strips identified together. The top edges of the strips are not attached to anything,
allowing us to deformation retract Z onto Y.

Ineach cell, €2, choose a point y, not in the arc along which S,, is attached. Define A := Z\|J_{ya}
and B .= Z \ X. Then, A deformation retracts onto X, and B is contractible. Choose a base
point zo near xy on the segment where all the strips S, intersect. Let & be the line segment
connecting 7o to xo in the intersection of the S,’s. Consider the base change isomorphism
Bt mi(A,x0) D [{] — [hlh] € mi(A, 29). In particular, (3, sends [Yapa7Val sends to [Aya0aVah].
Let d,, be loop in A N B based at zy such that 0, ~ei 5, hYaaVah. Thus, if 7, is the top edge of
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S and ¢, is non-trivial simple loop in €% \ {y.} based at the point 7, N €2, then §,, is homotopic
rel. {zo} to either 7,4,7, or o0y Ta

We claim that 7 (A N B, zy) is a free group generated by [J,] for varying o. To prove this, cover
A N B by the open sets A, == (AN B) \ U 4o eé. Since A, deformation retracts onto a circle in
e2 \ {y.}, we have 1,(Aq, 20) =~ Z.

Now, Theorem 133 to together with (2) of Theorem 132, tells that the kernel of inclusion
induced map is m(A,z9) — 7 (Z,z0) is m (A N B, 7). Under the base change isomorphisms
B mi(A,z0) — m1(A, xo) and ;2 m(Z, z0) = mi(Z,x0), the group (A N B, z) correspondence
to N, i.e., kernel of inclusion induced map is m (A, xo) — m(Z,xo) is N. Finally, X (resp. Y)
is a deformation retract of A (resp. Z), i.e., we have the following commutative diagram of the
inclusion-induced maps:

m(X, x0) — m(Y,y0)

~| |=

71-1(147 xO) — 7Tl(Zu X())

Thus the kernel of the inclusion induced map 7;(X, xo) — (Y, yo) is V. O

Theorem 160 Let n > 3 be an integer. Suppose we attach a collection {¢” }, of n-cells to a
path-connected space X via maps ¢, : S! — X, producing ¥ := X ]_Lpa B". Let xy € X. Then the
inclusion induced map (X, x9) — (Y, Xo) is an isomorphism.

Proof. In the proof of Theorem 159, now each A, ~ S"!, a simply connected space, i.e.,
m(A N B, z0) is a trivial group. [

Remark 161 The n-fold dunce cap D, is the attaching a 2-cell to S' via S! 3 7z — z* € S'. By

Theorem 159, m((D,) = (x)/(x") = Z,. For n = 2, we have D, = RP?. If n > 3, the space D, is
not a manifold.

Theorem 162 Let g, 4 > 1 be integers. By Seifert-Van Kampen theorem
m (T = (a1, by, -+, an, bylarbra; 'by' - - - agbea, 'b, ")

and
T (H,RP?) = <a1, . aplal - - 'ai> )

Proof. The space £, T = 3, (resp. #,RP?> = N,) is the obtained from attaching a 2-cell to
/7%, S! (resp. \/_, S') via the attaching map S' — /2%, S! (resp. S' — \//_, S') described the
words a;ba; 'b;’ ---agbgaéflbéfl (resp. a3 - -ag). O

Theorem 163 For every group G there is a 2-dimensional CW-complex X with m;(Xg) = G.
Theorem 164 (HNN-Seifert-van Kampen Theorem) Let A, B be two disjoint path-connected

open subsets of a path-connected space X and f: A — B be a homeomorphism. Let a: m(A) —
71(X) be the inclusion induced map; and 3: m(A) — m(X) be the composition of 7;(f): 7 (A) —
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m1(B) and the inclusion induced map 7(B) — m(X). Let g: X — X(f) := a%f(a) Then there
exists an isomorphism

m(X) * (1)

N

where N is the intersection of all normal subgroups of 7(X) * () containing {a(g)t3(g)~"t™" :
g € m(A)} such that

®: m (X() —

T (X) * ()
N
is the natural group homomorphism, which is injective by Britton’s Lemma.

Pom(g): mX) —

Corollary 165 Let .7 be a topological space. We suppose that it can be written as a union
7 = Y U Z such that the following conditions are satisfied: (1) Y and Z are open subsets of .7,
(2) Y is path-connected, (3) Z is simply connected, (4) Y N Z consists of two simply connected
path components A and B, each of which is open in .7. Then m((Y) * (t) = m(7).

Proof. LetZ' :=Z x 0and W := ;= =2—— and f: A X 0 — A be the obvious map. Now,

w
T (9 = m) = 7T1(W) * <t> = (7T1(Y) *71.(B) 7T1(Z,)) * <t> = 7T1(Y) * <t>

6 Simplicial complex, triangulation, and simplicial homology

Definition 166 Given a set {ay,...,a,} of points of R", this set is said to be geometrically
independent if for any (real) scalars ¢;, the equations

n

Zt,-annd itiai:()

i=0 i=0
imply that tp = #; = --- = 1, = 0. In other words, {a, ..., a,} is geometrically independent if
and only if the vectors a; — ay, ..., a, — ay are linearly independent.

Definition 167 Given a geometrically independent set of points {ay, ..., a, }, we define the n-plane
P spanned by these points to consist of all points x of RY such that

n
X = E tiai,
i=0

for some scalars ¢; with Z?:o t, =1.

Definition 168 Let{ay, ..., a, } be a geometrically independent setin RV. We define the n-simplex
a spanned by ay, ., a, to be the set of all points x of RY such that

n n
X = Ztia,- where Zt,- =1
i=0 i=0

and ¢; > 0 for all i. The numbers ¢; are uniquely determined by x; they are called the barycentric
coordinates of the point x of a with respect to ay, ..., a,.
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Remark 169 Let o be the n-simplex spanned by the geometrically independent set {ao, ..., a, }.
If x € o, let {#;(x)} be the barycentric coordinates of x; they are determined uniquely by the
conditions

n n
X = Ztia,- where Zt,- = land¢ > 0 forall i
i=0 i=0
Now, we have the following observations:

* The barycentric coordinates #;(x) of x with respect to ay, ..., a, are continuous functions of
X.

* 0 equals the union of all line segments joining a, to points of the simplex s spanned by
ai, ..., a,. Two such line segments intersect only in the point ay.

* 0 is a compact, convex set in RY, which equals the intersection of all convex sets in RN
containing dy, ..., dy,.

* There is one and only one geometrically independent set of points spanning o.

Definition 170 The points ay, ..., a,, that span o are called the vertices of o; the number 7 is
called the dimension of o.

Any simplex spanned by a subset of ay, ..., a, is called a face of o. In particular, the face of a
spanned by ay, ..., a, is called the face opposite ay.

The faces different from o itself are called the proper faces of ¢; their union is called the boundary
of o and denoted Bd(o).

The interior of ¢ is defined by the equation Int(c) = o \ Bd(0); the set Int(o) is sometimes called
an open simplex.

Remark 171 Now, we have the following observations:

* Bd(o) consists of all points x of o such that at least one of the barycentric coordinates #;(x)
is zero. Int(o) consists of those points of ¢ for which #;,(x) > 0 for all i.

* Given x € o, there is exactly one face s of o such that x € Int(s), for s must be the face of
o spanned by those a;; for which #;(x) is positive.

* Int(o) is convex and is open in the plane P spanned by {ay,...,a,}; its closure is o.
Furthermore, Int(o) equals the union of all open line segments joining a, to points of Int(s),
where s is the face of o opposite ay.

Definition 172 A simplicial complex K in R" is a collection of simplices in R" such that:

(1) Every face of a simplex of K is in K.

(2) The intersection of any two simplexes of K is a face of each of them.

In other words, the condition (2) is equivalent to
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(2') Every pair of distinct simplices of K have disjoint interiors.

Definition 173 If L is a sub-collection of K that contains all faces of its elements, then L is a
simplicial complex in its own right; it is called a sub-complex of K. One sub-complex of K is
the collection of all simplices of K of dimension at most p; it is called the p-skeleton of K and is
denoted K. The points of the collection K© are called the vertices of K.

Definition 174 Let |K| be the subset of R" that is the union of the simplices of K. Giving each
simplex its natural topology as a subspace of R", we then topologize |K| by declaring a subset
A of |K| to be closed in |K| if and only if A N o is closed in o, for each o in K. It is easy to
see that this defines a topology on |K|, for this collection of sets is closed under finite unions
and arbitrary intersections. The space |K| is called the underlying space of K, or the polytope of K.

A space that is the polytope of a simplicial complex will be called a polyhedron.

Remark 175 In general, the topology of |K| is finer (larger) than the topology |K| inherits as a
subspace of RY: If A is closed in |K| in the subspace topology, then A = B N |K| for some closed
set Bin RY. Then B N o is closed in o for each o, so BN |K| = A is closed in the topology of in
the topology of |K|, by definition.

However, if K is finite, these two topologies are the same. For suppose K is finite and A is closed
in |K|. Then A N o is closed in o and hence closed in RY. Because A is the union of finitely many
sets A N o, the set A also is closed in R".

Remark 176 If L is a sub-complex of K, then |L| is a closed subspace of |K|. In particular, if
o € K, then o is a closed subspace of |K|.

Remark 177 A mapf: |K| — X is continuous if and only if f|o is continuous for each o € K.

An edge containing the blue vertex

Fig. 8: Star and link
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Definition 178 If v is a vertex of K, the star of v in K, denoted by St(v), is the union of the
interiors of those simplices of K that have v as a vertex. Its closure, denoted St(v), is called the
closed star of v in K. It is the union of all simplices of K having v as a vertex and is the polytope
of a sub-complex of K. The set St(v) \ St(v) is called the link of v in K and is denoted Lk(v).
Figure 8 shows the link of three colored vertices.

Theorem 179 Let K and L be complexes, and letf : K© — L© be amap. Suppose that whenever
the vertices vy, ..., v, of K span a simplex of K, the points f(vy), ..., f(v,) are vertices of a simplex
of L. Then f can be extended to a continuous map g: |K| — |L| such that

n

x=) ty; = g®) =Y 1fv).
i=0

i=0

We call g the (linear) simplicial map induced by the vertex map f.

Graph of g

Theorem 180 Let

1 17 [1
K = {o,g, 1, [o, 3] : [3, 1”andL .= {0,1,[0, 11}

be simplicial complexes in R. Using Theorem 179, let g: |K| — |L| be a map defined by
g(0) =0, g(3) =1, g(1) = 0. Consider the subdivision

12 17 71 2] [1
K =1:0,-21,10,=|,|=2],|=1
{ 73737 7[ 73}7{373}7{37 }}

of K, i.e., each simplex of K’ is contained in a simplex of K and and each simplex of K equals
the union of finitely many simplices of K’. Show that there is no subdivision L' of L such that
g: |K'| = |K| — |L| = |L’| is a simplicial map induced by some vertex map (K")© — (L")©.
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Proof. On the contrary, assume there is a vertex map f: (K)© — (L)© which induces the map
g: |K'| = |L’|. Then in particular, f(0) = 0 = f(1), f (1) = 1 and f (3) = g (). Since, g is
induced by f we have

2 2 2 2
g<t~§) :g<(1—t)~0—|—t‘§) :(l—t)-g(0)+t-g<§) :t~g(§> for0 <r<1.

]

Definition 181 A space is triangulable if there is a simplicial complex whose geometric carrier
is homeomorphic to the space.

1 9 3 L
1 9 3 1
6 6
1 5 6 4 7
7 g 9 7 4 3 4
1 9 3 1
1 2 3 ]

Fig. 9: Two different triangulations of torus. On the right side: A vertex-minimal triangulation.

Fig. 10: These are not triangulations of the torus.

Remark 182 In a simplicial complex, the intersection of two simplices is either empty or a single
common face of them. That is, if the intersection of two simplices is a union (possibly disjoint
union) of common faces of them, then the union must be a common face also. See Figure 10.
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Remark 183 Given a list of k vertices, one can tell whether there is no (k — 1)-cell with those
vertices or there is exactly one such (k — 1)-cell and it’s that one.

Remark 184 In order to get a triangulation of a compact surface S, we first split up its planner
representation P, which is a polygon, into finitely many triangles, i.e., we construct a finite
simplicial complex K whose geometric carrier is P. Now, suppose we split up "correctly” the
polygon P. In that case, the restriction of the quotient map ¢: P — S on each triangle will be an
embedding, and considering images of all elements of X', we get a simplicial complex, denoted
by ¢(K) so that the surface S is homeomorphic to the geometric carrier of g(K).

1 2 3 1 1 2 3 1
4 5
4 5 6 7 7
7 6 8
7 8 9 4 4
1 2 3 1 1 2 3 1

Fig. 11: Two different triangulations of Klein Bottle. Right side: A vertex-minimal triangulation.

I -

Fig. 12: A triangulation of >,
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Remark 185 Note that if a compact surface S has a triangulation having v vertices, e edges
1
and ¢ triangles then v > = (7+1/39 =24 X(5)), ¢ = 3(v = \(§)), and 3r = 2e. Here,
2

X(S) is the Euler characteristic, i.e., x(S) = Y (—1)" - rank(H,(S)). Recall that x(S?) = 2,
n=0

X (8% = 2 — 2g, and x(§,RP*) =2 —g.

//\\

Fig. 13: A minimal triangulation of >J,. Note that for any triangulation of >, we have v > 8.4244.

One can show (difficult!) that a triangulation by 9 vertices, 33 edges, and 22 triangles of >3, is not
possible.

Definition 186 Let X be a simplex. Define two orderings of its vertex set to be equivalent if they
differ from one another by an even permutation. If dimo > 0, the orderings of the vertices of o
then fall into two equivalence classes. Each of these classes is called an orientation of 0. If o is a
0-simplex, then there is only one class and hence only one orientation of 0. An oriented simplex
is a simplex o together with an orientation of o.
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A simplicial complex is said to be oriented if each of its simplexes is assigned an orientation.

Definition 187 Let K be an oriented simplicial complex and o, o?*! be two simplexes whose
dimensions differ by 1. Define the incidence number, denoted by [0”“, 0”} , as follows: If o” is
not a face of o”*!, we put [0”*!, 0”] = 0. Suppose o7 is a face of o”*!, v is the additional vertex
of o and vy < vy < --- < v, gives the orientation of ¢”. Then

' . ' ientati P+
[0+, 0] = {—H ifv <vy <v <--- <, gives the orientation of 0",
Y

—1ifv < vy <v; <--- <, gives the opposite orientation of o”*'.

Definition 188 Let K be an oriented simplicial complex. Thus, each simplex of K comes with a
fixed orientation. For each integer n, let C,(K) be the free abelian group generated by all oriented
n-simplices of K, called the group of n-chains of K. Define 9,: C,(K) — C,_;(K) as follows:

Op(0™) = Z [0", 0"*1] o L.

o1 is an oriented n-simplex of K
One can show that 9, | o 0, = 0 for every integer n. Define

ker 0,

Theorem 189 [Cro78, Theorem 2.3.] Let K be a simplicial complex with two orientations, and
let K; and K, denote the resulting oriented simplicial complexes. Then the homology groups
H,(K;;7Z) and H,(K;; Z) are isomorphic for each dimension 7.

Theorem 190 [Mun84, Theorem 7.1.] Let K be an oriented simplicial complex. Then the group
Hy(K;Z) is free abelian. If {v,} is a collection consisting of one vertex from each component of
|K|, then the homology classes of the chains v, form a basis for Hy(K; Z).

Definition 191 An n-pseudomanifold is a simplicial complex K with the following properties:

» Each simplex of K is a face of some n-simplex of K.
* Each (n — 1)-simplex is a face of exactly two n-simplexes of K.

* Given a pair o7, 05 of two n-simplexes of K, there is a sequence of n-simplexes beginning
with a o] and ending with o3 such that any two successive terms of the sequence have a
common (n — 1)-face.

Definition 192 Let K be an n-pseudomanifold. For each (n — 1)-simplex 0"~ ! of K, let ¢! and

o denote the two n-simplexes of which o"~! is a face. An orientation for K having the property

[o7, 0" = — [0}, "]

for each (n — 1)-simplex 0"~ ! of K is a coherent orientation. An n-pseudomanifold is orientable
if it can be assigned a coherent orientation. Otherwise it is non-orientable.
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6.1 Homology Calculation of Klein Bottle

Consider the following triangulation of Klein bottle K. Orient the 1-simplices of K randomly,
keeping in mind the identification on the boundary of the square. Look at the two different
orientations of e;3 edges in the square in order to get oriented e;3 edge in K. That is, a random
orientation of 1-simplices of the square may not give an orientation of 1-simplices of Klein bottle,
and this is due to identification on the boundary of the square. For example, if e, ¢’ are edges of
the square giving a single edge in quotient space (Klein bottle), then choosing one orientation for
e, we have exactly one and only one way to orient the other edge ¢/, so that after identification,

they give an oriented edge in quotient space.

1% %) V3 V1
~% =z
e3 ey €11
01 03 05
V €23 €25 €27 V
€3 624A 626A el
(o)) 04 O¢
7 Vg V9
4 € V4
€16 €19 €2
g7 09 011
A €15 v €18 €71 v
€14 €17 €20A €14
03 J10 012
V4 Vs Vg
> = > - %
€4 €g €12
013 015 017
€ €6 €10
elA €5A egv 613A
014 016 018
1 V2 V3
~% - Vi
€3 €7 €11

Fig. 14: Homology calculation of Klein bottle

Now, a priori, not knowing whether Klein bottle is orientable or not, let’s try to orient all triangles
coherently, if possible. In this case, if we choose an orientation for oy, say clockwise manner,
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then one has to orient 0, in the clockwise manner due to the edge e,3. Similarly, for edge ey,
we need to orient o3 in the clockwise manner also, and so on. In other words, due to the edges
inside the square, once if we choose an orientation for a triangle, and the coherent orientation of
the other triangles comes automatically. Now, o and o5 share the edge e;3 in the quotient space
with the same incidence number, i.e., it is impossible to give a global coherent orientation of the
triangles of Klein bottle.

18
Let o := an -0y € Cr(K). Now,

=1

18
Oh(a) = an - Oh(00)

=1

=ni-(—es—en—e3)+m-(—eg—eutexn)+tny-(+eutes—er)+n-(—es—exten)
+ns-(+ex—er—ex) +ne- (+ey+eit+en)tn-(+eutesters)+ng:(—eis—es+er)
+ng-(—e7—ers—er9) +nio- (+es—exn—es) +ni-(+exn—enten)+nn (—exntenten)
+ny3 - (Jrel —|—e4—e2) +nig- (—l—ez—e5+e3) +nys - (+e5+eg—e6) + N6 - (+e6+e9+e7)

+n7 - (—69 —6’12+€10) +ng - (—610 *613+€11)-

Now, using some basic calculations, one can show that 9,(a) = Oifand onlyifn; = --- = njg = 0.
Also,

18
(1) o (Z Ue) =2-(e; +ey —ep3).
—1

Push-off Trick: Given a 1-chain 3, to get a simple looking 1-chain 3’ such that 5 is homologous
to 3, we need to push 3 off 1-simplices that are in the interior of the polygon as many as possible.

Let B0 = 377 m” - e, € Cy(K). We want to push 3O off e, using o3, so consider B =
BO + mPdy(013). Now, if we write 5O = 3777 m{" - ¢, then m$" = 0 and 4" homologous to
B©. Look at the first two squares Figure 15.

Next, we want to push 3% off es using o5, so consider 32 := 3D —m'Y9,(c5). Now, if we write

BA =377 m - ey, then mY ¢ — 0 and 5® homologous to 3. So, 3 is homologous

to 3©. Look at the second and third squares in the picture above.

=0, m

Continue this fashion. At the end, we have 519 = ZZI mgm) - e, with mém) = 0 for all ¢ except
¢ =1,3,7,11,13,14,17,20,24, 26, and 39 is homologous to 3©.

Therefore,
(B = 0,819
=m0y —v) +m{OW —v2) +mS Oy —v3) + w0 vy — ) + P v —vy)

16 16 16 16 16
+ m(14 )(v7 — )+ m(17 )(v5 — )+ m(20 )(v9 — V) + m(24 )(vz — ) + m(26 )(V3 — Vo)
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Thus using some basic calculations, 9;(5®) = 0 if and only if 5 is homologous to m - (e; +
ey —e3) +n- (e + e7 + e3) for some integers m and n.

Next, suppose m - (e; + ej4 — e13) +n - (e1; + e7 + e3) = dx(a) for some o € C»(K) and for some
integers m,n. Write a := Zéil ng - oy. Then any 1-simplex e inside the polygon is a side of
exactly two triangles o;, 0; such that [0}, e] = —[0;, e]. Therefore, considering 0,(cv), we can say
that nG=--+-=ng.

Thus using Equation (1), we can say that m - (e; + e14 — e13) +n - (e1; + e7 + e3) € im(0,) if and
only if m is even and n = 0.

Fig. 15: Push-off trick

Finally, consider
0= C(K) 2 k) 2 cuk) 250
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Then

Now, the map

ker 81

H\(K;Z) = im 8,

is an isomorphism, i.e.

H>(K;Z) = ker0, = 0.

S [m-(er +eu—en)+n-(enn+er+e)| — ([mh,n) € Z, & Z

,H\(K;Z) = Z, ® 7. Also, Hy(K; Z) = Z as K is path-connected.
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